In this paper, we study the relative homological dimension based on the class of projectively coresolved Gorenstein flat modules (PGF-modules), that were introduced by Saroch and Stovicek in [26]. The resulting PGF-dimension of modules has several properties in common with the Gorenstein projective dimension, the relative homological theory based on the class of Gorenstein projective modules. In particular, there is a hereditary Hovey triple in the category of modules of finite PGF-dimension, whose associated homotopy category is triangulated equivalent to the stable category of PGF-modules. Studying the finiteness of the PGF global dimension reveals a connection between classical homological invariants of left and right modules over the ring, that leads to generalizations of certain results by Jensen [24], Gedrich and Gruenberg [17] that were originally proved in the realm of commutative Noetherian rings.
Revised:
Accepted:
Published online:
Georgios Dalezios 1; Ioannis Emmanouil 2
@article{CRMATH_2023__361_G9_1429_0, author = {Georgios Dalezios and Ioannis Emmanouil}, title = {Homological dimension based on a class of {Gorenstein} flat modules}, journal = {Comptes Rendus. Math\'ematique}, pages = {1429--1448}, publisher = {Acad\'emie des sciences, Paris}, volume = {361}, year = {2023}, doi = {10.5802/crmath.480}, language = {en}, }
TY - JOUR AU - Georgios Dalezios AU - Ioannis Emmanouil TI - Homological dimension based on a class of Gorenstein flat modules JO - Comptes Rendus. Mathématique PY - 2023 SP - 1429 EP - 1448 VL - 361 PB - Académie des sciences, Paris DO - 10.5802/crmath.480 LA - en ID - CRMATH_2023__361_G9_1429_0 ER -
Georgios Dalezios; Ioannis Emmanouil. Homological dimension based on a class of Gorenstein flat modules. Comptes Rendus. Mathématique, Volume 361 (2023), pp. 1429-1448. doi : 10.5802/crmath.480. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.480/
[1] Stable Module Theory, Memoirs of the American Mathematical Society, 94, American Mathematical Society, 1969
[2] Representation Theory of Artin Algebras, Cambridge Studies in Advanced Mathematics, 36, Cambridge University Press, 1995 | DOI
[3] PGF-modules and strongly semi-Gorenstein-projective modules, J. Shandong Univ., Nat. Sci., Volume 56 (2021) no. 8, pp. 105-110 | DOI
[4] Cohen-Macaulay modules, (co)torsion pairs and virtually Gorenstein algebras, J. Algebra, Volume 288 (2005) no. 1, pp. 137-211 | DOI | MR | Zbl
[5] Homological and homotopical aspects of torsion theories, Memoirs of the American Mathematical Society, 883, American Mathematical Society, 2007
[6] A note on Gorenstein flat dimension, Algebra Colloq., Volume 18 (2011) no. 1, pp. 155-161 | DOI | MR | Zbl
[7] Global Gorenstein dimensions, Proc. Am. Math. Soc., Volume 138 (2010) no. 2, pp. 461-465 | DOI | MR | Zbl
[8] Exact categories, Expo. Math., Volume 28 (2010) no. 1, pp. 1-69 | DOI | MR | Zbl
[9] Homological Algebra, Princeton Mathematical Series, 19, Princeton University Press, 1956
[10] Gorenstein weak global dimension is symmetric, Math. Nachr., Volume 294 (2021) no. 11, pp. 2121-2128 | DOI | MR | Zbl
[11] On Gorenstein projective, injective and flat dimensions—a functorial description with applications, J. Algebra, Volume 302 (2006) no. 1, pp. 231-279 | DOI | MR | Zbl
[12] On complete resolutions, Topology Appl., Volume 78 (1997) no. 3, pp. 235-250 | DOI | MR | Zbl
[13] Quillen equivalences for stable categories, J. Algebra, Volume 501 (2018), pp. 130-149 | DOI | MR | Zbl
[14] On certain cohomological invariants of groups, Adv. Math., Volume 225 (2010) no. 6, pp. 3446-3462 | DOI | MR | Zbl
[15] On the finiteness of Gorenstein homological dimensions, J. Algebra, Volume 372 (2012), pp. 376-396 | DOI | MR | Zbl
[16] Relative Homological Algebra. Vol. 1, De Gruyter Expositions in Mathematics, 30, Walter de Gruyter, 2011
[17] Complete cohomological functors on groups, Topology Appl., Volume 25 (1987), pp. 203-223 | DOI | MR | Zbl
[18] Model structures on exact categories, J. Pure Appl. Algebra, Volume 215 (2011) no. 12, pp. 2892-2902 | DOI | MR | Zbl
[19] Duality pairs, generalized Gorenstein modules, and Ding injective envelopes, C. R. Math. Acad. Sci. Paris, Volume 360 (2022), pp. 381-398 | MR | Zbl
[20] Approximations and endomorphism algebras of modules, De Gruyter Expositions in Mathematics, 41, Walter de Gruyter, 2006 | DOI
[21] Triangulated categories in the representation theory of finite-dimensional algebras, London Mathematical Society Lecture Note Series, 119, London Mathematical Society, 1989
[22] Gorenstein homological dimensions, J. Pure Appl. Algebra, Volume 189 (2004) no. 1-3, pp. 167-193 | DOI | MR | Zbl
[23] Cotorsion pairs, model category structures, and representation theory, Math. Z., Volume 241 (2002) no. 3, pp. 553-592 | DOI | MR | Zbl
[24] Les foncteurs dérivés de et leurs applications en théorie des modules, Lecture Notes in Mathematics, 254, Springer, 1972
[25] Finitistic dimension conjectures via Gorenstein projective dimension, J. Algebra, Volume 591 (2022), pp. 15-35 | DOI | MR | Zbl
[26] Singular compactness and definability for -cotorsion and Gorenstein modules, Sel. Math., New Ser., Volume 26 (2020) no. 2, 23, 40 pages | MR | Zbl
Cited by Sources:
Comments - Policy