Comptes Rendus
Representation theory
On the symmetry of the finitistic dimension
Comptes Rendus. Mathématique, Volume 361 (2023), pp. 1449-1453.

For any ring we propose the construction of a cover which increases the finitistic dimension on one side and decreases the finitistic dimension to zero on the opposite side. This complements recent work of Cummings.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/crmath.481
Classification: 16E10

Henning Krause 1

1 Fakultät für Mathematik Universität Bielefeld D-33501 Bielefeld Germany
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{CRMATH_2023__361_G9_1449_0,
     author = {Henning Krause},
     title = {On the symmetry of the finitistic dimension},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1449--1453},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {361},
     year = {2023},
     doi = {10.5802/crmath.481},
     language = {en},
}
TY  - JOUR
AU  - Henning Krause
TI  - On the symmetry of the finitistic dimension
JO  - Comptes Rendus. Mathématique
PY  - 2023
SP  - 1449
EP  - 1453
VL  - 361
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.481
LA  - en
ID  - CRMATH_2023__361_G9_1449_0
ER  - 
%0 Journal Article
%A Henning Krause
%T On the symmetry of the finitistic dimension
%J Comptes Rendus. Mathématique
%D 2023
%P 1449-1453
%V 361
%I Académie des sciences, Paris
%R 10.5802/crmath.481
%G en
%F CRMATH_2023__361_G9_1449_0
Henning Krause. On the symmetry of the finitistic dimension. Comptes Rendus. Mathématique, Volume 361 (2023), pp. 1449-1453. doi : 10.5802/crmath.481. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.481/

[1] Maurice Auslander; David A. Buchsbaum Homological dimension in noetherian rings. II, Trans. Am. Math. Soc., Volume 88 (1958), pp. 194-206 | MR | Zbl

[2] Hyman Bass Finitistic dimension and a homological generalization of semi-primary rings, Trans. Am. Math. Soc., Volume 95 (1960), pp. 466-488 | DOI | MR | Zbl

[3] Charley Cummings Left-right symmetry of finite finitistic dimension (2022) | arXiv

[4] Ellen Kirkman; James Kuzmanovich Algebras with large homological dimensions, Proc. Amer. Math. Soc., Volume 109 (1990) no. 4, pp. 903-906 | DOI | MR | Zbl

[5] Henning Krause Homological theory of representations, Cambridge Studies in Advanced Mathematics, 195, Cambridge University Press, 2022 | Zbl

Cited by Sources:

Comments - Policy