For any ring we propose the construction of a cover which increases the finitistic dimension on one side and decreases the finitistic dimension to zero on the opposite side. This complements recent work of Cummings.
Revised:
Accepted:
Published online:
Henning Krause 1
@article{CRMATH_2023__361_G9_1449_0, author = {Henning Krause}, title = {On the symmetry of the finitistic dimension}, journal = {Comptes Rendus. Math\'ematique}, pages = {1449--1453}, publisher = {Acad\'emie des sciences, Paris}, volume = {361}, year = {2023}, doi = {10.5802/crmath.481}, language = {en}, }
Henning Krause. On the symmetry of the finitistic dimension. Comptes Rendus. Mathématique, Volume 361 (2023), pp. 1449-1453. doi : 10.5802/crmath.481. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.481/
[1] Homological dimension in noetherian rings. II, Trans. Am. Math. Soc., Volume 88 (1958), pp. 194-206 | MR | Zbl
[2] Finitistic dimension and a homological generalization of semi-primary rings, Trans. Am. Math. Soc., Volume 95 (1960), pp. 466-488 | DOI | MR | Zbl
[3] Left-right symmetry of finite finitistic dimension (2022) | arXiv
[4] Algebras with large homological dimensions, Proc. Amer. Math. Soc., Volume 109 (1990) no. 4, pp. 903-906 | DOI | MR | Zbl
[5] Homological theory of representations, Cambridge Studies in Advanced Mathematics, 195, Cambridge University Press, 2022 | Zbl
Cited by Sources:
Comments - Policy