Comptes Rendus
Partial differential equations
Stable determination of the nonlinear term in a quasilinear elliptic equation by boundary measurements
Comptes Rendus. Mathématique, Volume 361 (2023), pp. 1455-1470.

We establish a Lipschitz stability inequality for the problem of determining the nonlinear term in a quasilinear elliptic equation by boundary measurements. We give a proof based on a linearization procedure together with special solutions constructed from the fundamental solution of the linearized problem.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/crmath.484
Classification : 35R30

Mourad Choulli 1

1 Université de Lorraine
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{CRMATH_2023__361_G9_1455_0,
     author = {Mourad Choulli},
     title = {Stable determination of the nonlinear term in a quasilinear elliptic equation by boundary measurements},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1455--1470},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {361},
     year = {2023},
     doi = {10.5802/crmath.484},
     language = {en},
}
TY  - JOUR
AU  - Mourad Choulli
TI  - Stable determination of the nonlinear term in a quasilinear elliptic equation by boundary measurements
JO  - Comptes Rendus. Mathématique
PY  - 2023
SP  - 1455
EP  - 1470
VL  - 361
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.484
LA  - en
ID  - CRMATH_2023__361_G9_1455_0
ER  - 
%0 Journal Article
%A Mourad Choulli
%T Stable determination of the nonlinear term in a quasilinear elliptic equation by boundary measurements
%J Comptes Rendus. Mathématique
%D 2023
%P 1455-1470
%V 361
%I Académie des sciences, Paris
%R 10.5802/crmath.484
%G en
%F CRMATH_2023__361_G9_1455_0
Mourad Choulli. Stable determination of the nonlinear term in a quasilinear elliptic equation by boundary measurements. Comptes Rendus. Mathématique, Volume 361 (2023), pp. 1455-1470. doi : 10.5802/crmath.484. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.484/

[1] Cătălin I. Cârstea; Ali Feizmohammadi; Yavar Kian; Katya Krupchyk; Gunther Uhlmann The Calderón inverse problem for isotropic quasilinear conductivities, Adv. Math., Volume 391 (2021), 107956 | Zbl

[2] Cătălin I. Cârstea; Matti Lassas; Tony Liimatainen; Lauri Oksanen An inverse problem for the Riemannian minimal surface equation, J. Differ. Equations, Volume 379 (2024), pp. 626-648 | DOI | MR

[3] Mourad Choulli Comments on the determination of the conductivity at the boundary from the Dirichlet-to-Neumann map, J. Math. Anal. Appl., Volume 517 (2023) no. 2, 126638, 31 pages | Zbl

[4] Mourad Choulli Hölder stability for a semilinear elliptic inverse problem, J. Math. Anal. Appl., Volume 530 (2024) no. 1, 127639 | DOI | Zbl

[5] Mourad Choulli; Guanghui Hu; Masahiro Yamamoto Stability inequality for a semilinear elliptic inverse problem, NoDEA, Nonlinear Differ. Equ. Appl., Volume 28 (2021) no. 4, 37, 26 pages | Zbl

[6] Herbert Egger; Jan-Frederik Pietschmann; Matthias Schlottbom Simultaneous identification of diffusion and absorption coefficients in a quasilinear elliptic problem, Inverse Probl., Volume 30 (2014) no. 3, 035009 | MR | Zbl

[7] Herbert Egger; Jan-Frederik Pietschmann; Matthias Schlottbom On the uniqueness of nonlinear diffusion coefficients in the presence of lower order terms, Inverse Probl., Volume 33 (2017) no. 11, 115005 | MR | Zbl

[8] David Gilbarg; Neil S. Trudinger Elliptic partial differential equations of second order, Grundlehren der Mathematischen Wissenschaften, 224, Springer, 1983 | Zbl

[9] Oleg Imanuvilov; Masahiro Yamamoto Unique determination of potentials and semilinear terms of semilinear elliptic equations from partial Cauchy data, J. Inverse Ill-Posed Probl., Volume 21 (2013), pp. 85-108 | DOI | MR | Zbl

[10] Victor Isakov; John Sylvester Global uniqueness for a semilinear elliptic inverse problem, Commun. Pure Appl. Math., Volume 47 (1994) no. 10, pp. 1403-1410 | DOI | MR | Zbl

[11] Hubert Kalf On E. E. Levi’s method of constructing a fundamental solution for second-order elliptic equations, Rend. Circ. Mat. Palermo, Volume 41 (1992) no. 2, pp. 251-294 | DOI | MR | Zbl

[12] Hyeonbae Kang; Gen Nakamura Identification of nonlinearity in a conductivity equation via the Dirichlet-to-Neumann map, Inverse Probl., Volume 18 (2002) no. 4, pp. 1079-1088 | DOI | MR | Zbl

[13] Yavar Kian Lipschitz and Hölder stable determination of nonlinear terms for elliptic equations (2022) | arXiv

[14] Yavar Kian; Katya Krupchyk; Gunther Uhlmann Partial data inverse problems for quasilinear conductivity equations (2020) (to appear in Mathematische Annalen) | arXiv

[15] Katya Krupchyk; Gunther Uhlmann Partial data inverse problems for semilinear elliptic equations with gradient nonlinearities, Math. Res. Lett., Volume 27 (2020) no. 6, pp. 1801-1824 | DOI | MR | Zbl

[16] Katya Krupchyk; Gunther Uhlmann A remark on partial data inverse problems for semilinear elliptic equations, Proc. Am. Math. Soc., Volume 148 (2020) no. 2, pp. 681-685 | DOI | MR | Zbl

[17] Matti Lassas; Tony Liimatainen; Yi-Hsuan Lin; Mikko Salo Partial data inverse problems and simultaneous recovery of boundary and coefficients for semilinear elliptic equations (2019) | arXiv

[18] Matti Lassas; Tony Liimatainen; Yi-Hsuan Lin; Mikko Salo Inverse problems for elliptic equations with power type nonlinearities, J. Math. Pures Appl., Volume 145 (2021), pp. 44-82 | DOI | MR | Zbl

[19] Claudio Muñoz; Gunther Uhlmann The Calderón problem for quasilinear elliptic equations, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 37 (2020) no. 5, pp. 1143-1166 | Zbl

[20] Ziqi Sun On a quasilinear inverse boundary value problem, Math. Z., Volume 221 (1996) no. 2, pp. 293-305 | MR | Zbl

[21] Ziqi Sun; Gunther Uhlmann Inverse problems in quasilinear anisotropic media, Am. J. Math., Volume 119 (1997) no. 4, pp. 771-797 | MR | Zbl

Cited by Sources:

Comments - Politique