Comptes Rendus
Functional analysis
On the isomorphism class of q-Gaussian W * -algebras for infinite variables
Comptes Rendus. Mathématique, Volume 361 (2023), pp. 1711-1716.

Let M q (H ) be the q-Gaussian von Neumann algebra associated with a separable infinite dimensional real Hilbert space H where -1<q<1. We show that M q (H )¬M 0 (H ) for -1<q0<1. The C * -algebraic counterpart of this result was obtained recently in [1]. Using ideas of Ozawa we show that this non-isomorphism result also holds on the level of von Neumann algebras.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/crmath.489
Classification: 46L35, 46L06
Keywords: $q$-Gaussian von Neumann algebras, Akemann–Ostrand property

Martijn Caspers 1

1 TU Delft, EWI/DIAM, P.O.Box 5031, 2600 GA Delft, The Netherlands
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{CRMATH_2023__361_G11_1711_0,
     author = {Martijn Caspers},
     title = {On the isomorphism class of $q${-Gaussian} {W}$^\ast $-algebras for infinite variables},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1711--1716},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {361},
     year = {2023},
     doi = {10.5802/crmath.489},
     language = {en},
}
TY  - JOUR
AU  - Martijn Caspers
TI  - On the isomorphism class of $q$-Gaussian W$^\ast $-algebras for infinite variables
JO  - Comptes Rendus. Mathématique
PY  - 2023
SP  - 1711
EP  - 1716
VL  - 361
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.489
LA  - en
ID  - CRMATH_2023__361_G11_1711_0
ER  - 
%0 Journal Article
%A Martijn Caspers
%T On the isomorphism class of $q$-Gaussian W$^\ast $-algebras for infinite variables
%J Comptes Rendus. Mathématique
%D 2023
%P 1711-1716
%V 361
%I Académie des sciences, Paris
%R 10.5802/crmath.489
%G en
%F CRMATH_2023__361_G11_1711_0
Martijn Caspers. On the isomorphism class of $q$-Gaussian W$^\ast $-algebras for infinite variables. Comptes Rendus. Mathématique, Volume 361 (2023), pp. 1711-1716. doi : 10.5802/crmath.489. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.489/

[1] Matthijs Borst; Martijn Caspers; Mario Klisse; Mateusz Wasilewski On the isomorphism class of q-Gaussian C * -algebras for infinite variables (2022) (to appear in Proc. Am. Math. Soc.) | arXiv

[2] Marek Bożejko; Burkhard Kümmerer; Roland Speicher q-Gaussian processes: non-commutative and classical aspects, Commun. Math. Phys., Volume 185 (1997) no. 1, pp. 129-154 | MR | Zbl

[3] Marek Bożejko; Roland Speicher An example of a generalized Brownian motion, Commun. Math. Phys., Volume 137 (1991) no. 3, pp. 519-531 | DOI | MR | Zbl

[4] Nathanial P. Brown; Narutaka Ozawa C * -algebras and finite-dimensional approximations, Graduate Studies in Mathematics, 88, American Mathematical Society, 2008, xvi+509 pages

[5] Yoann Dabrowski A free stochastic partial differential equation, Ann. Inst. Henri Poincaré, Volume 50 (2014) no. 4, pp. 1404-1455 | Numdam | MR | Zbl

[6] Changying Ding; Srivatsav Kunnawalkam Elayavalli; Jesse Peterson Properly Proximal von Neumann Algebras (2022) | arXiv

[7] Kenneth J. Dykema; Alexandru Nica; Dan V. Voiculescu Free Random Variables, CRM Monograph Series, 1, American Mathematical Society, 1992, v+70 pages

[8] Alice Guionnet; Dimitri Shlyakhtenko Free monotone transport, Invent. Math., Volume 197 (2014) no. 3, pp. 613-661 | DOI | MR

[9] E. Christopher Lance Hilbert C * -modules, A toolkit for operator algebraists, London Mathematical Society Lecture Note Series, 20, London Mathematical Society, 1995, x+130 pages | DOI

[10] Brent Nelson; Qiang Zeng Free monotone transport for infinite variables, Int. Math. Res. Not., Volume 2018 (2018) no. 17, pp. 5486-5535 | DOI | MR | Zbl

[11] Alexandre Nou Non injectivity of the q-deformed von Neumann algebra, Math. Ann., Volume 330 (2004) no. 1, pp. 17-38 | MR | Zbl

[12] Narutaka Ozawa A comment on free group factors, Noncommutative harmonic analysis with applications to probability. II (Banach Center Publications), Volume 89, Polish Academy of Sciences, 2010, pp. 241-245 | DOI | MR | Zbl

[13] Masamichi Takesaki Theory of operator algebras. I, Springer, 1979, vii+415 pages | DOI

Cited by Sources:

Comments - Policy