Comptes Rendus
Numerical analysis
ϕ-FEM for the heat equation: optimal convergence on unfitted meshes in space
Comptes Rendus. Mathématique, Volume 361 (2023), pp. 1699-1710.

Thanks to a finite element method, we solve numerically parabolic partial differential equations on complex domains by avoiding the mesh generation, using a regular background mesh, not fitting the domain and its real boundary exactly. Our technique follows the ϕ-FEM paradigm, which supposes that the domain is given by a level-set function. In this paper, we prove a priori error estimates in l 2 (H 1 ) and l (L 2 ) norms for an implicit Euler discretization in time. We give numerical illustrations to highlight the performances of ϕ-FEM, which combines optimal convergence accuracy, easy implementation process and fastness.

Received:
Accepted:
Revised after acceptance:
Published online:
DOI: 10.5802/crmath.497

Michel Duprez 1; Vanessa Lleras 2; Alexei Lozinski 3; Killian Vuillemot 1, 2

1 MIMESIS team, Inria Nancy - Grand Est, MLMS team, Université de Strasbourg, 1 place de l’hôpital, 67000 Strasbourg, France
2 IMAG, Univ Montpellier, CNRS UMR 5149, 499-554 Rue du Truel, 34090 Montpellier, France
3 Université de Franche-Comté, Laboratoire de mathématiques de Besançon, UMR CNRS 6623, 16 route de Gray, 25030 Besançon Cedex, France
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{CRMATH_2023__361_G11_1699_0,
     author = {Michel Duprez and Vanessa Lleras and Alexei Lozinski and Killian Vuillemot},
     title = {$\phi ${-FEM} for the heat equation: optimal convergence on unfitted meshes in space},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1699--1710},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {361},
     year = {2023},
     doi = {10.5802/crmath.497},
     language = {en},
}
TY  - JOUR
AU  - Michel Duprez
AU  - Vanessa Lleras
AU  - Alexei Lozinski
AU  - Killian Vuillemot
TI  - $\phi $-FEM for the heat equation: optimal convergence on unfitted meshes in space
JO  - Comptes Rendus. Mathématique
PY  - 2023
SP  - 1699
EP  - 1710
VL  - 361
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.497
LA  - en
ID  - CRMATH_2023__361_G11_1699_0
ER  - 
%0 Journal Article
%A Michel Duprez
%A Vanessa Lleras
%A Alexei Lozinski
%A Killian Vuillemot
%T $\phi $-FEM for the heat equation: optimal convergence on unfitted meshes in space
%J Comptes Rendus. Mathématique
%D 2023
%P 1699-1710
%V 361
%I Académie des sciences, Paris
%R 10.5802/crmath.497
%G en
%F CRMATH_2023__361_G11_1699_0
Michel Duprez; Vanessa Lleras; Alexei Lozinski; Killian Vuillemot. $\phi $-FEM for the heat equation: optimal convergence on unfitted meshes in space. Comptes Rendus. Mathématique, Volume 361 (2023), pp. 1699-1710. doi : 10.5802/crmath.497. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.497/

[1] Martin Alnæs; Jan Blechta; Johan Hake; August Johansson; Benjamin Kehlet; Anders Logg; Chris Richardson; Johannes Ring; Marie E. Rognes; Garth N. Wells The FEniCS Project Version 1.5, Arch. Numer. Soft., Volume 3 (2015), 100 | DOI

[2] Chandrasekhar Annavarapu; Martin Hautefeuille; John E. Dolbow A robust Nitsche’s formulation for interface problems, Comput. Methods Appl. Mech. Eng., Volume 225-228 (2012), pp. 44-54 | DOI | MR | Zbl

[3] Erik Burman Ghost penalty, C. R. Math. Acad. Sci. Paris, Volume 348 (2010) no. 21-22, pp. 1217-1220 | DOI | Numdam | MR | Zbl

[4] Erik Burman; Susanne Claus; Peter Hansbo; Mats G. Larson; André Massing CutFEM: discretizing geometry and partial differential equations, Int. J. Numer. Methods Eng., Volume 104 (2015) no. 7, pp. 472-501 | DOI | MR | Zbl

[5] S. Cotin; Michel Duprez; Vanessa Lleras; Alexei Lozinski; K. Vuillemot ϕ-FEM: an efficient simulation tool using simple meshes for problems in structure mechanics and heat transfer, Partition of Unity Methods (Wiley Series in Computational Mechanics), John Wiley & Sons, 2022

[6] Michel Duprez; Vanessa Lleras; Alexei Lozinski A new ϕ-FEM approach for problems with natural boundary conditions, Numer. Methods Partial Differ. Equations, Volume 39 (2023) no. 1, pp. 281-303 | DOI | MR

[7] Michel Duprez; Vanessa Lleras; Alexei Lozinski ϕ-FEM: an optimally convergent and easily implementable immersed boundary method for particulate flows and Stokes equations, ESAIM, Math. Model. Numer. Anal., Volume 57 (2023) no. 3, pp. 1111-1142 | DOI | MR | Zbl

[8] Michel Duprez; Alexei Lozinski ϕ-FEM: a finite element method on domains defined by level-sets, SIAM J. Numer. Anal., Volume 58 (2020) no. 2, pp. 1008-1028 | DOI | MR | Zbl

[9] Lawrence C. Evans Partial differential equations, Graduate Studies in Mathematics, 19, American Mathematical Society, 2010

[10] Roland Glowinski; Tsorng-Whay Pan; Jacques Periaux A fictitious domain method for Dirichlet problem and applications, Comput. Methods Appl. Mech. Eng., Volume 111 (1994) no. 3-4, pp. 283-303 | DOI | MR | Zbl

[11] Alex Main; Guglielmo Scovazzi The shifted boundary method for embedded domain computations. I: Poisson and Stokes problems, J. Comput. Phys., Volume 372 (2018), pp. 972-995 | DOI | MR | Zbl

[12] Peter McCorquodale; Phillip Colella; Hans Johansen A Cartesian grid embedded boundary method for the heat equation on irregular domains, J. Comput. Phys., Volume 173 (2001) no. 2, pp. 620-635 | DOI | MR | Zbl

[13] Rajat Mittal; Gianluca Iaccarino Immersed boundary methods (Annual Review of Fluid Mechanics), Volume 37, Annual Reviews, 2005, pp. 239-261 | MR | Zbl

[14] Peter Schwartz; Michael Barad; Phillip Colella; Terry Ligocki A Cartesian grid embedded boundary method for the heat equation and Poisson’s equation in three dimensions, J. Comput. Phys., Volume 211 (2006) no. 2, pp. 531-550 | DOI | MR | Zbl

[15] Vidar Thomée Galerkin finite element methods for parabolic problems, Springer Series in Computational Mathematics, 25, Springer, 1997, x+302 pages | DOI | Zbl

Cited by Sources:

Comments - Policy