Comptes Rendus
Algebra, Combinatorics
Torus quotient of the Grassmannian G n,2n
Comptes Rendus. Mathématique, Volume 361 (2023), pp. 1499-1509.

Let G n,2n be the Grassmannian parameterizing the n-dimensional subspaces of 2n . The Picard group of G n,2n is generated by a unique ample line bundle 𝒪(1). Let T be a maximal torus of SL(2n,) which acts on G n,2n and 𝒪(1). By [10, Theorem 3.10, p. 764], 2 is the minimal integer k such that 𝒪(k) descends to the GIT quotient. In this article, we prove that the GIT quotient of G n,2n (n3) by T with respect to 𝒪(2)=𝒪(1) 2 is not projectively normal when polarized with the descent of 𝒪(2).

Soit G n,2n la Grassmannienne des sous-espaces de dimension n de 2n . Le groupe de Picard de G n,2n est engendré par un unique fibré en droites ample 𝒪(1). Fixons un tore maximal T du groupe SL(2n,) qui agit sur G n,2n et 𝒪(1). D’après [10, Theorem 3.10, p. 764], 2 est l’entier minimal k tel que 𝒪(k) descende au quotient GIT. Dans cet article, nous prouvons que le quotient GIT de G n,2n (n3) par T par rapport à 𝒪(2)=𝒪(1) 2 n’est pas projectivement normal lorsqu’il est polarisé avec la descente de 𝒪(2).

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/crmath.501
Classification: 14M15, 05E10
Keywords: Grassmannian, Line bundle, Semi-stable point, GIT-quotient, Projective normality

Arpita Nayek 1; Pinakinath Saha 1

1 Department of Mathematics, IIT Bombay, Powai, Mumbai 400076, India
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{CRMATH_2023__361_G9_1499_0,
     author = {Arpita Nayek and Pinakinath Saha},
     title = {Torus quotient of the {Grassmannian} $G_{n,2n}$},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1499--1509},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {361},
     year = {2023},
     doi = {10.5802/crmath.501},
     language = {en},
}
TY  - JOUR
AU  - Arpita Nayek
AU  - Pinakinath Saha
TI  - Torus quotient of the Grassmannian $G_{n,2n}$
JO  - Comptes Rendus. Mathématique
PY  - 2023
SP  - 1499
EP  - 1509
VL  - 361
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.501
LA  - en
ID  - CRMATH_2023__361_G9_1499_0
ER  - 
%0 Journal Article
%A Arpita Nayek
%A Pinakinath Saha
%T Torus quotient of the Grassmannian $G_{n,2n}$
%J Comptes Rendus. Mathématique
%D 2023
%P 1499-1509
%V 361
%I Académie des sciences, Paris
%R 10.5802/crmath.501
%G en
%F CRMATH_2023__361_G9_1499_0
Arpita Nayek; Pinakinath Saha. Torus quotient of the Grassmannian $G_{n,2n}$. Comptes Rendus. Mathématique, Volume 361 (2023), pp. 1499-1509. doi : 10.5802/crmath.501. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.501/

[1] Michel Brion; Shrawan Kumar Frobenius Splitting Methods in Geometry and Representation theory, Progress in Mathematics, 231, Birkhäuser, 2005 | DOI

[2] Robin Hartshorne Algebraic Geometry, Graduate Texts in Mathematics, 52, Springer, 1977 | DOI

[3] Benjamin Howard; John Millson; Andrew Snowden; Ravi Vakil The equations for the moduli space of n points on the line, Duke Math. J., Volume 146 (2009) no. 2, pp. 175-226 | MR | Zbl

[4] James E. Humphreys Introduction to Lie Algebras and Representation Theory, Graduate Texts in Mathematics, 9, Springer, 1972 | DOI | MR

[5] James E. Humphreys Linear Algebraic Groups, Graduate Texts in Mathematics, 21, Springer, 1975 | MR

[6] S. Senthamarai Kannan Torus quotients of homogeneous spaces, Proc. Indian Acad. Sci., Math. Sci., Volume 108 (1998) no. 1, pp. 1-12 | DOI | MR | Zbl

[7] S. Senthamarai Kannan; Arpita Nayek; Pinakinath Saha Torus quotients of Schubert varieties in the Grassmannian G 2,n , Indian J. Pure Appl. Math., Volume 53 (2022) no. 1, pp. 273-293 | DOI | MR | Zbl

[8] S. Senthamarai Kannan; Santosha K. Pattanayak Torus quotients of homogeneous spaces-minimal dimensional Schubert varieties admitting semi-stable points, Proc. Indian Acad. Sci., Math. Sci., Volume 119 (2009) no. 4, pp. 469-485 | DOI | MR | Zbl

[9] S. Senthamarai Kannan; Sardar Pranab Torus quotients of homogeneous spaces of the general linear group and the standard representation of certain symmetric groups, Proc. Indian Acad. Sci., Math. Sci., Volume 119 (2009) no. 1, pp. 81-100 | DOI | MR | Zbl

[10] Shrawan Kumar Descent of line bundles to GIT quotients of flag varieties by maximal torus, Transform. Groups, Volume 13 (2008) no. 4, pp. 757-771 | DOI | MR | Zbl

[11] Venkatramani Lakshmibai; Justin Brown Flag Varieties. An Interplay of Geometry, Combinatorics, and Representation Theory, Texts and Readings in Mathematics, 53, Hindustan Book Agency, 2009

[12] Peter Littelmann A Generalization of the Littlewood-Richardson Rule, J. Algebra, Volume 130 (1990) no. 2, pp. 328-368 | DOI | MR | Zbl

[13] David Mumford; John Fogarty; Frances Kirwan Geometric Invariant Theory, Ergebnisse der Mathematik und ihrer Grenzgebiete. 2. Folge, 34, Springer, 1994 | DOI

[14] Arpita Nayek; Santosha K. Pattanayak; Shivang Jindal Projective normality of torus quotients of flag varieties, J. Pure Appl. Algebra, Volume 224 (2020) no. 10, 106389, 24 pages | MR | Zbl

[15] Peter E. Newstead Introduction to Moduli Problems And Orbit Spaces, Lectures on Mathematics and Physics. Mathematics. Tata Institute of Fundamental Research, 51, Tata Institute of Fundamental Research, 1978

[16] Conjeeveram S. Seshadri Quotient Spaces Modulo Reductive Algebraic Groups, Ann. Math., Volume 95 (1972), pp. 511-556 | DOI | MR | Zbl

[17] Conjeeveram S. Seshadri Introduction to the Theory of Standard Monomials, Texts and Readings in Mathematics, 46, Hindustan Book Agency, 2016 | DOI

[18] Constantin Teleman The quantization conjecture revisited, Ann. Math., Volume 152 (2000) no. 1, pp. 1-43 | DOI | MR | Zbl

Cited by Sources:

Comments - Policy