We show that the Levi-Civita tensors are semistable in the sense of Geometric Invariant Theory, which is equivalent to an analogue of the Alon–Tarsi conjecture on Latin squares. The proof uses the connection of Tao’s slice rank with semistable tensors. We also show an application to an asymptotic saturation-type version of Rota’s basis conjecture.
Accepted:
Published online:
Damir Yeliussizov 1, 2
@article{CRMATH_2023__361_G8_1367_0, author = {Damir Yeliussizov}, title = {Stability of the {Levi-Civita} tensors and an {Alon{\textendash}Tarsi} type theorem}, journal = {Comptes Rendus. Math\'ematique}, pages = {1367--1373}, publisher = {Acad\'emie des sciences, Paris}, volume = {361}, year = {2023}, doi = {10.5802/crmath.505}, language = {en}, }
Damir Yeliussizov. Stability of the Levi-Civita tensors and an Alon–Tarsi type theorem. Comptes Rendus. Mathématique, Volume 361 (2023), pp. 1367-1373. doi : 10.5802/crmath.505. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.505/
[1] The intersection of a matroid and a simplicial complex, Trans. Am. Math. Soc., Volume 358 (2006) no. 11, pp. 4895-4917 | DOI | MR | Zbl
[2] The odd case of Rota’s bases conjecture, Adv. Math., Volume 282 (2015), pp. 427-442 | DOI | MR | Zbl
[3] Colorings and orientations of graphs, Combinatorica, Volume 12 (1992) no. 2, pp. 125-143 | DOI | MR | Zbl
[4] On cap sets and the group-theoretic approach to matrix multiplication, Discrete Anal., Volume 2017 (2017), 3, 27 pages | MR | Zbl
[5] Stable properties of plethysm: on two conjectures of Foulkes, Manuscr. Math., Volume 80 (1993) no. 4, pp. 347-371 | DOI | MR | Zbl
[6] Sur certains modules gradués associés aux produits symétriques, Algèbre non commutative, groupes quantiques et invariants (Reims, 1995) (Séminaires et Congrès), Volume 2, Société Mathématique de France, 1995, pp. 157-183 | Zbl
[7] Towards a theory of non-commutative optimization: geodesic first and second order methods for moment maps and polytopes, 2019 IEEE 60th Annual Symposium on Foundations of Computer Science (FOCS), IEEE Computer Society, 2019, pp. 845-861 | DOI
[8] Alternating minimization, scaling algorithms, and the null-cone problem from invariant theory (2017) | arXiv
[9] On the theory of determinants, Trans. Camb. Philos. Soc., Volume 8 (1843), pp. 1-16
[10] Polynomial bounds for rings of invariants, Proc. Am. Math. Soc., Volume 129 (2001) no. 4, pp. 955-963 | DOI | MR | Zbl
[11] On the number of even and odd Latin squares of order , Adv. Math., Volume 128 (1997) no. 1, pp. 20-35 | DOI | MR | Zbl
[12] The conjectures of Alon–Tarsi and Rota in dimension prime minus one, SIAM J. Discrete Math., Volume 24 (2010) no. 2, pp. 394-399 | DOI | MR | Zbl
[13] The slice rank of a direct sum (2021) | arXiv
[14] New applications of the polynomial method: The cap set conjecture and beyond, Bull. Am. Math. Soc., Volume 56 (2019), pp. 29-64 | DOI | MR | Zbl
[15] On the relations of various conjectures on Latin squares and straightening coefficients, Discrete Math., Volume 128 (1994) no. 1-3, pp. 225-236 | DOI | MR | Zbl
[16] A study of the representations supported by the orbit closure of the determinant, Compos. Math., Volume 151 (2015) no. 2, pp. 292-312 | DOI | MR | Zbl
[17] Connections between conjectures of Alon–Tarsi, Hadamard–Howe, and integrals over the special unitary group, Discrete Math., Volume 338 (2015) no. 7, pp. 1232-1238 | DOI | MR | Zbl
[18] Tensors: geometry and applications, Graduate Studies in Mathematics, 128, American Mathematical Society, 2012
[19] Geometric invariant theory, 34, Springer, 1994 | DOI
[20] A colorful determinantal identity, a conjecture of Rota, and Latin squares, Am. Math. Mon., Volume 104 (1997) no. 2, pp. 156-159 | MR | Zbl
[21] Ten mathematics problems I will never solve, Mitt. Dtsch. Math.-Ver., Volume 6 (1998), pp. 45-52 | MR | Zbl
[22] A symmetric formulation of the Croot-Lev-Pach-Ellenberg-Gijswijt capset bound (2016) (available at https://terrytao.wordpress.com/2016/05/18/a-symmetric-formulation-of-the-croot-lev-pach-ellenberg-gijswijt-capset-bound/)
[23] Notes on the “slice rank” of tensors (2016) (available at https://terrytao.wordpress.com/2016/08/24/notes-on-the-slice-rank-of-tensors/)
[24] Saturation of Rota’s basis conjecture (2021) | arXiv
Cited by Sources:
Comments - Policy