Comptes Rendus
Algebra, Combinatorics
Stability of the Levi-Civita tensors and an Alon–Tarsi type theorem
Comptes Rendus. Mathématique, Volume 361 (2023), pp. 1367-1373.

We show that the Levi-Civita tensors are semistable in the sense of Geometric Invariant Theory, which is equivalent to an analogue of the Alon–Tarsi conjecture on Latin squares. The proof uses the connection of Tao’s slice rank with semistable tensors. We also show an application to an asymptotic saturation-type version of Rota’s basis conjecture.

Received:
Accepted:
Published online:
DOI: 10.5802/crmath.505
Classification: 14L24, 15A72, 13A50, 05E14, 05B15, 05B35

Damir Yeliussizov 1, 2

1 Kazakh-British Technical University, Almaty, Kazakhstan
2 Institute of Mathematics and Mathematical Modeling, Almaty, Kazakhstan
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{CRMATH_2023__361_G8_1367_0,
     author = {Damir Yeliussizov},
     title = {Stability of the {Levi-Civita} tensors and an {Alon{\textendash}Tarsi} type theorem},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1367--1373},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {361},
     year = {2023},
     doi = {10.5802/crmath.505},
     language = {en},
}
TY  - JOUR
AU  - Damir Yeliussizov
TI  - Stability of the Levi-Civita tensors and an Alon–Tarsi type theorem
JO  - Comptes Rendus. Mathématique
PY  - 2023
SP  - 1367
EP  - 1373
VL  - 361
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.505
LA  - en
ID  - CRMATH_2023__361_G8_1367_0
ER  - 
%0 Journal Article
%A Damir Yeliussizov
%T Stability of the Levi-Civita tensors and an Alon–Tarsi type theorem
%J Comptes Rendus. Mathématique
%D 2023
%P 1367-1373
%V 361
%I Académie des sciences, Paris
%R 10.5802/crmath.505
%G en
%F CRMATH_2023__361_G8_1367_0
Damir Yeliussizov. Stability of the Levi-Civita tensors and an Alon–Tarsi type theorem. Comptes Rendus. Mathématique, Volume 361 (2023), pp. 1367-1373. doi : 10.5802/crmath.505. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.505/

[1] Ron Aharoni; Eli Berger The intersection of a matroid and a simplicial complex, Trans. Am. Math. Soc., Volume 358 (2006) no. 11, pp. 4895-4917 | DOI | MR | Zbl

[2] Ron Aharoni; Martin Loebl The odd case of Rota’s bases conjecture, Adv. Math., Volume 282 (2015), pp. 427-442 | DOI | MR | Zbl

[3] Noga Alon; Michael Tarsi Colorings and orientations of graphs, Combinatorica, Volume 12 (1992) no. 2, pp. 125-143 | DOI | MR | Zbl

[4] Jonah Blasiak; Thomas Church; Henry Cohn; Joshua A. Grochow; Eric Naslund; Will Sawin; Chris Umans On cap sets and the group-theoretic approach to matrix multiplication, Discrete Anal., Volume 2017 (2017), 3, 27 pages | MR | Zbl

[5] Michel Brion Stable properties of plethysm: on two conjectures of Foulkes, Manuscr. Math., Volume 80 (1993) no. 4, pp. 347-371 | DOI | MR | Zbl

[6] Michel Brion Sur certains modules gradués associés aux produits symétriques, Algèbre non commutative, groupes quantiques et invariants (Reims, 1995) (Séminaires et Congrès), Volume 2, Société Mathématique de France, 1995, pp. 157-183 | Zbl

[7] Peter Bürgisser; Cole Franks; Ankit Garg; Rafael Oliveira; Michael Walter; Avi Wigderson Towards a theory of non-commutative optimization: geodesic first and second order methods for moment maps and polytopes, 2019 IEEE 60th Annual Symposium on Foundations of Computer Science (FOCS), IEEE Computer Society, 2019, pp. 845-861 | DOI

[8] Peter Bürgisser; Ankit Garg; Rafael Oliveira; Michael Walter; Avi Wigderson Alternating minimization, scaling algorithms, and the null-cone problem from invariant theory (2017) | arXiv

[9] Arthur Cayley On the theory of determinants, Trans. Camb. Philos. Soc., Volume 8 (1843), pp. 1-16

[10] Harm Derksen Polynomial bounds for rings of invariants, Proc. Am. Math. Soc., Volume 129 (2001) no. 4, pp. 955-963 | DOI | MR | Zbl

[11] Arthur A. Drisko On the number of even and odd Latin squares of order p+1, Adv. Math., Volume 128 (1997) no. 1, pp. 20-35 | DOI | MR | Zbl

[12] David G. Glynn The conjectures of Alon–Tarsi and Rota in dimension prime minus one, SIAM J. Discrete Math., Volume 24 (2010) no. 2, pp. 394-399 | DOI | MR | Zbl

[13] W. T. Gowers The slice rank of a direct sum (2021) | arXiv

[14] Joshua A. Grochow New applications of the polynomial method: The cap set conjecture and beyond, Bull. Am. Math. Soc., Volume 56 (2019), pp. 29-64 | DOI | MR | Zbl

[15] Rosa Huang; Gian-Carlo Rota On the relations of various conjectures on Latin squares and straightening coefficients, Discrete Math., Volume 128 (1994) no. 1-3, pp. 225-236 | DOI | MR | Zbl

[16] Shrawan Kumar A study of the representations supported by the orbit closure of the determinant, Compos. Math., Volume 151 (2015) no. 2, pp. 292-312 | DOI | MR | Zbl

[17] Shrawan Kumar; Joseph M. Landsberg Connections between conjectures of Alon–Tarsi, Hadamard–Howe, and integrals over the special unitary group, Discrete Math., Volume 338 (2015) no. 7, pp. 1232-1238 | DOI | MR | Zbl

[18] Joseph M. Landsberg Tensors: geometry and applications, Graduate Studies in Mathematics, 128, American Mathematical Society, 2012

[19] David Mumford; John Fogarty; Frances Kirwan Geometric invariant theory, 34, Springer, 1994 | DOI

[20] Shmuel Onn A colorful determinantal identity, a conjecture of Rota, and Latin squares, Am. Math. Mon., Volume 104 (1997) no. 2, pp. 156-159 | MR | Zbl

[21] Gian-Carlo Rota Ten mathematics problems I will never solve, Mitt. Dtsch. Math.-Ver., Volume 6 (1998), pp. 45-52 | MR | Zbl

[22] Terry Tao A symmetric formulation of the Croot-Lev-Pach-Ellenberg-Gijswijt capset bound (2016) (available at https://terrytao.wordpress.com/2016/05/18/a-symmetric-formulation-of-the-croot-lev-pach-ellenberg-gijswijt-capset-bound/)

[23] Terry Tao; Will Sawin Notes on the “slice rank” of tensors (2016) (available at https://terrytao.wordpress.com/2016/08/24/notes-on-the-slice-rank-of-tensors/)

[24] Damir Yeliussizov Saturation of Rota’s basis conjecture (2021) | arXiv

Cited by Sources:

Comments - Policy