The Rumin algebra of a contact manifold is a contact invariant -algebra of differential forms which computes the de Rham cohomology algebra. We recover this fact by giving a simple and explicit construction of the Rumin algebra via Markl’s formulation of the Homotopy Transfer Theorem.
Revised:
Accepted:
Published online:
Keywords: Rumin complex, Rumin algebra, contact invariant
Jeffrey S. Case 1
@article{CRMATH_2023__361_G8_1375_0, author = {Jeffrey S. Case}, title = {A simple construction of the {Rumin} algebra}, journal = {Comptes Rendus. Math\'ematique}, pages = {1375--1382}, publisher = {Acad\'emie des sciences, Paris}, volume = {361}, year = {2023}, doi = {10.5802/crmath.510}, language = {en}, }
Jeffrey S. Case. A simple construction of the Rumin algebra. Comptes Rendus. Mathématique, Volume 361 (2023), pp. 1375-1382. doi : 10.5802/crmath.510. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.510/
[1] Some differential complexes within and beyond parabolic geometry, Differential geometry and Tanaka theory—differential system and hypersurface theory (Advanced Studies in Pure Mathematics), Volume 82, Mathematical Society of Japan, 2019, pp. 13-40 | DOI | MR | Zbl
[2] Exterior differential systems and Euler-Lagrange partial differential equations, Chicago Lectures in Mathematics, University of Chicago Press, 2003, viii+213 pages | MR
[3] Differential invariants and curved Bernstein-Gelfand-Gelfand sequences, J. Reine Angew. Math., Volume 537 (2001), pp. 67-103 | DOI | MR | Zbl
[4] Bernstein-Gelfand-Gelfand sequences, Ann. Math., Volume 154 (2001) no. 1, pp. 97-113 | DOI | MR | Zbl
[5] The bigraded Rumin complex via differential forms (accepted in Mem. Am. Math. Soc.) | arXiv
[6] Real homotopy theory of Kähler manifolds, Invent. Math., Volume 29 (1975) no. 3, pp. 245-274 | DOI | MR | Zbl
[7] Rational homotopy theory, Graduate Texts in Mathematics, 205, Springer, 2001, xxxiv+535 pages | DOI | MR
[8] Complexe de Rumin, suite spectrale de Forman et cohomologie des espaces symétriques de rang , C. R. Math. Acad. Sci. Paris, Volume 320 (1995) no. 4, pp. 451-456 | MR | Zbl
[9] On the theory of homology of fiber spaces, Usp. Mat. Nauk, Volume 35 (1980) no. 3(213), pp. 183-188 International Topology Conference (Moscow State Univ., Moscow, 1979) | MR
[10] Cohomology -algebra and rational homotopy type, Algebraic topology—old and new (Banach Center Publications), Volume 85, Polish Academy of Sciences, 2009, pp. 225-240 | DOI | MR | Zbl
[11] Introduction to -infinity algebras and modules, Homology Homotopy Appl., Volume 3 (2001) no. 1, pp. 1-35 | DOI | MR | Zbl
[12] Algebraic operads, Grundlehren der Mathematischen Wissenschaften, 346, Springer, 2012, xxiv+634 pages | DOI | MR
[13] Transferring (strongly homotopy associative) structures, Rend. Circ. Mat. Palermo (2006) no. 79, pp. 139-151 | MR | Zbl
[14] Un complexe de formes différentielles sur les variétés de contact, C. R. Math. Acad. Sci. Paris, Volume 310 (1990) no. 6, pp. 401-404 | MR | Zbl
[15] Formes différentielles sur les variétés de contact, J. Differ. Geom., Volume 39 (1994) no. 2, pp. 281-330 | MR | Zbl
[16] Sub-Riemannian limit of the differential form spectrum of contact manifolds, Geom. Funct. Anal., Volume 10 (2000) no. 2, pp. 407-452 | DOI | MR | Zbl
[17] An introduction to spectral and differential geometry in Carnot-Carathéodory spaces, Rend. Circ. Mat. Palermo (2005) no. 75, pp. 139-196 | MR | Zbl
[18] Differential forms and the topology of manifolds, Manifolds—Tokyo 1973 (Proc. Internat. Conf., Tokyo, 1973) (1975), pp. 37-49 | MR
[19] Infinitesimal computations in topology, Publ. Math., Inst. Hautes Étud. Sci. (1977) no. 47, pp. 269-331 | DOI | Numdam | MR | Zbl
[20] Cohomology and Hodge theory on symplectic manifolds: III, J. Differ. Geom., Volume 103 (2016) no. 1, pp. 83-143 | MR | Zbl
Cited by Sources:
Comments - Policy