Comptes Rendus
Théorie du contrôle
On Binary Optimal Control in H s (0,T), s<1/2
[Sur le Contrôle Optimal Binaire en H s (0,T), s<1/2]
Comptes Rendus. Mathématique, Volume 361 (2023), pp. 1531-1540.

L’espace fonctionnel H s (0,T), s<1/2, est compatible avec les discontinuités et est par conséquent un candidat de choix pour résoudre des problèmes de contrôle optimal avec des fonctions de contrôle à valeurs discrètes. Nous montrons que, bien que les contrôles fortement oscillants soient impossibles, il existe des contrôles admissibles dans H s (0,T) ayant un nombre fini de discontinuités avec un saut de 1 pour chacune des paires dénombrables d’intervalles disjoints. Cependant, sous des hypothèses raisonnables, nous montrons que certaines de ces discontinuités ne peuvent pas être optimaux. Établir des conditions d’optimalité pertinentes via un argument variationnel avec des perturbations admissibles simples constitue un défi majeur, ce que nous illustrons par un exemple.

The function space H s (0,T), s<1/2, allows for functions with jump discontinuities and is thus attractive for treating optimal control problems with discrete-valued control functions. We show that while arbitrary chattering controls are impossible, there exist feasible controls in H s (0,T) that have countably jump discontinuities with jump height one in each of countably many pairwise disjoint intervals. However, under mild assumptions, we show that certain types of jump discontinuities cannot be optimal. The derivation of meaningful optimality conditions via a direct variational argument using simple feasible perturbations remains a major challenge; as illustrated by an example.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.507

Paul Manns 1 ; Thomas M. Surowiec 2

1 TU Dortmund University, Germany
2 Simula Research Laboratory, Oslo, Norway
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2023__361_G9_1531_0,
     author = {Paul Manns and Thomas M. Surowiec},
     title = {On {Binary} {Optimal} {Control} in $H^s(0,T)$, $s < 1/2$},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1531--1540},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {361},
     year = {2023},
     doi = {10.5802/crmath.507},
     language = {en},
}
TY  - JOUR
AU  - Paul Manns
AU  - Thomas M. Surowiec
TI  - On Binary Optimal Control in $H^s(0,T)$, $s < 1/2$
JO  - Comptes Rendus. Mathématique
PY  - 2023
SP  - 1531
EP  - 1540
VL  - 361
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.507
LA  - en
ID  - CRMATH_2023__361_G9_1531_0
ER  - 
%0 Journal Article
%A Paul Manns
%A Thomas M. Surowiec
%T On Binary Optimal Control in $H^s(0,T)$, $s < 1/2$
%J Comptes Rendus. Mathématique
%D 2023
%P 1531-1540
%V 361
%I Académie des sciences, Paris
%R 10.5802/crmath.507
%G en
%F CRMATH_2023__361_G9_1531_0
Paul Manns; Thomas M. Surowiec. On Binary Optimal Control in $H^s(0,T)$, $s < 1/2$. Comptes Rendus. Mathématique, Volume 361 (2023), pp. 1531-1540. doi : 10.5802/crmath.507. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.507/

[1] Lamberto Cesari Existence theorems for weak and usual optimal solutions in Lagrange problems with unilateral constraints. II. Existence theorems for weak solutions, Trans. Am. Math. Soc., Volume 124 (1966) no. 3, pp. 413-430 | DOI | MR | Zbl

[2] Stephan Dahlke; Thomas M. Surowiec Wavelet-based approximations of pointwise bound constraints in Lebesgue and Sobolev spaces, IMA J. Numer. Anal., Volume 42 (2020) no. 1, pp. 417-439 | DOI | MR | Zbl

[3] Eleonora Di Nezza; Giampiero Palatucci; Enrico Valdinoci Hitchhiker’s guide to the fractional Sobolev spaces, Bull. Sci. Math., Volume 136 (2012) no. 5, pp. 521-573 | DOI | MR | Zbl

[4] Revaz Valer’yanovich Gamkrelidze On sliding optimal states, Dokl. Akad. Nauk SSSR, Volume 143 (1962) no. 6, pp. 1243-1245 | MR

[5] Simone Göttlich; Andreas Potschka; Ute Ziegler Partial outer convexification for traffic light optimization in road networks, SIAM J. Sci. Comput., Volume 39 (2017) no. 1, p. B53-B75 | DOI | MR | Zbl

[6] Falk M. Hante; Günter Leugering; Alexander Martin; Lars Schewe; Martin Schmidt Challenges in optimal control problems for gas and fluid flow in networks of pipes and canals: From modeling to industrial applications, Industrial Mathematics and Complex Systems, Springer, 2017, pp. 77-122 | DOI | Zbl

[7] Christian Kirches; Sebastian Sager; Hans Georg Bock; Johannes P. Schlöder Time-optimal control of automobile test drives with gear shifts, Optim. Control Appl. Methods, Volume 31 (2010) no. 2, pp. 137-153 | DOI | MR | Zbl

[8] Sven Leyffer; Paul Manns Sequential linear integer programming for integer optimal control with total variation regularization, ESAIM, Control Optim. Calc. Var., Volume 28 (2022), 66, 34 pages | MR | Zbl

Cité par Sources :

Commentaires - Politique