Comptes Rendus
Partial differential equations, Control theory
A stability estimate for data assimilation subject to the heat equation with initial datum
Comptes Rendus. Mathématique, Volume 361 (2023), pp. 1521-1530.

This paper studies the unique continuation problem for the heat equation. We prove a so-called conditional stability estimate for the solution. We are interested in local estimates that are Hölder stable with the weakest possible norms of data on the right-hand side. Such an estimate is useful for the convergence analysis of computational methods dealing with data assimilation. We focus on the case of a known solution at initial time and in some subdomain but that is unknown on the boundary. To the best of our knowledge, this situation has not yet been studied in the literature.

Cette contribution traite du problème de continuation unique pour l’équation de la chaleur. Nous prouvons une estimée conditionnelle de stabilité pour la solution de ce problème. Nous sommes intéressés par une estimée locale qui est Hölder-stable avec les normes les plus faibles possibles pour le terme de droite. Une telle estimée est utile pour l’analyse de convergence des méthodes de calcul traitant du problème d’assimilation de données. Nous nous intéressons en particulier au cas où la solution est connue à l’instant initial et dans un certain sous-domaine mais est inconnue sur la frontière du domaine. Cette situation ne semble pas avoir été déjà traitée dans la littérature.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/crmath.506
Classification: 35A23, 35B30, 35K05

Erik Burman 1; Guillaume Delay 2; Alexandre Ern 3; Lauri Oksanen 4

1 Department of Mathematics, University College London, London, UK–WC1E 6BT, UK
2 Sorbonne Université, CNRS, Université Paris Cité, LJLL, F-75005 Paris, France
3 CERMICS, École des Ponts, 77455 Marne-la-Vallée cedex 2, and INRIA, Paris, France
4 University of Helsinki, Department of Mathematics and Statistics, P.O 68, 00014 University of Helsinki, Finland
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{CRMATH_2023__361_G9_1521_0,
     author = {Erik Burman and Guillaume Delay and Alexandre Ern and Lauri Oksanen},
     title = {A stability estimate for data assimilation subject to the heat equation with initial datum},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1521--1530},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {361},
     year = {2023},
     doi = {10.5802/crmath.506},
     language = {en},
}
TY  - JOUR
AU  - Erik Burman
AU  - Guillaume Delay
AU  - Alexandre Ern
AU  - Lauri Oksanen
TI  - A stability estimate for data assimilation subject to the heat equation with initial datum
JO  - Comptes Rendus. Mathématique
PY  - 2023
SP  - 1521
EP  - 1530
VL  - 361
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.506
LA  - en
ID  - CRMATH_2023__361_G9_1521_0
ER  - 
%0 Journal Article
%A Erik Burman
%A Guillaume Delay
%A Alexandre Ern
%A Lauri Oksanen
%T A stability estimate for data assimilation subject to the heat equation with initial datum
%J Comptes Rendus. Mathématique
%D 2023
%P 1521-1530
%V 361
%I Académie des sciences, Paris
%R 10.5802/crmath.506
%G en
%F CRMATH_2023__361_G9_1521_0
Erik Burman; Guillaume Delay; Alexandre Ern; Lauri Oksanen. A stability estimate for data assimilation subject to the heat equation with initial datum. Comptes Rendus. Mathématique, Volume 361 (2023), pp. 1521-1530. doi : 10.5802/crmath.506. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.506/

[1] Laurent Bourgeois Quantification of the unique continuation property for the heat equation, Math. Control Relat. Fields, Volume 7 (2017) no. 3, pp. 347-367 | DOI | MR | Zbl

[2] Erik Burman; Guillaume Delay; Alexandre Ern The unique continuation problem for the heat equation discretized with a high-order space-time nonconforming method, SIAM J. Numer. Anal., Volume 61 (2023) no. 5, pp. 2534-2557 | DOI | MR

[3] Erik Burman; Jonathan Ish-Horowicz; Lauri Oksanen Fully discrete finite element data assimilation method for the heat equation, ESAIM, Math. Model. Numer. Anal., Volume 52 (2018) no. 5, pp. 2065-2082 | DOI | MR | Zbl

[4] Erik Burman; Mihai Nechita; Lauri Oksanen Unique continuation for the Helmholtz equation using stabilized finite element methods, J. Math. Pures Appl., Volume 129 (2019), pp. 1-22 | DOI | MR | Zbl

[5] Erik Burman; Mihai Nechita; Lauri Oksanen A stabilized finite element method for inverse problems subject to the convection-diffusion equation. I: diffusion-dominated regime, Numer. Math., Volume 144 (2020), pp. 451-477 | DOI | MR | Zbl

[6] Erik Burman; Lauri Oksanen Data assimilation for the heat equation using stabilized finite element methods, Numer. Math., Volume 139 (2018), pp. 505-528 | DOI | MR | Zbl

[7] Oleg Yu. Èmanuilov Controllability of parabolic equations, Mat. Sb., Volume 186 (1995) no. 6, pp. 109-132 | DOI | MR

[8] Oleg Yu. Imanuvilov; Masahiro Yamamoto Carleman estimate for a parabolic equation in a Sobolev space of negative order and its applications, Control of nonlinear distributed parameter systems (College Station, TX, 1999) (Lecture Notes in Pure and Applied Mathematics), Volume 218, Marcel Dekker, 2001, pp. 113-137 | MR | Zbl

[9] Victor Isakov Carleman type estimates in an anisotropic case and applications, J. Differ. Equations, Volume 105 (1993), pp. 217-238 | DOI | MR | Zbl

[10] Michael V. Klibanov Estimates of initial conditions of parabolic equations and inequalities via lateral Cauchy data, Inverse Probl., Volume 22 (2006), pp. 495-514 | DOI | MR | Zbl

[11] Jérôme Le Rousseau; Gilles Lebeau On Carleman estimates for elliptic and parabolic operators. Applications to unique continuation and control of parabolic equations, ESAIM, Control Optim. Calc. Var., Volume 18 (2012) no. 3, pp. 712-747 | DOI | Numdam | MR | Zbl

[12] Jean-Pierre Puel A nonstandard approach to a data assimilation problem and Tychonov regularization revisited, SIAM J. Control Optim., Volume 48 (2009) no. 2, pp. 1089-1111 | DOI | MR | Zbl

[13] Luc Robbiano Théorème d’unicité adapté au contrôle des solutions des problèmes hyperboliques, Commun. Partial Differ. Equations, Volume 16 (1991) no. 4-5, pp. 789-800 | DOI | Zbl

[14] Luc Robbiano Fonction de coût et contrôle des solutions des équations hyperboliques, Asymptotic Anal., Volume 10 (1995) no. 2, pp. 95-115 | DOI | Zbl

[15] Masahiro Yamamoto Carleman estimates for parabolic equations and applications, Inverse Probl., Volume 25 (2009) no. 12, 123013, 75 pages | DOI | MR | Zbl

Cited by Sources:

Comments - Policy