[Le nombre de chaînes recouvrant un ensemble ordonné sans antichaînes infinies]
Le nombre de recouvrement par chaînes d’un ensemble ordonné
The chain covering number
Révisé le :
Accepté le :
Publié le :
Uri Abraham 1 ; Maurice Pouzet 2, 3

@article{CRMATH_2023__361_G8_1383_0, author = {Uri Abraham and Maurice Pouzet}, title = {The chain covering number of a poset with no infinite antichains}, journal = {Comptes Rendus. Math\'ematique}, pages = {1383--1399}, publisher = {Acad\'emie des sciences, Paris}, volume = {361}, year = {2023}, doi = {10.5802/crmath.511}, language = {en}, }
Uri Abraham; Maurice Pouzet. The chain covering number of a poset with no infinite antichains. Comptes Rendus. Mathématique, Volume 361 (2023), pp. 1383-1399. doi : 10.5802/crmath.511. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.511/
[1] A note on Dilworth’s theorem in the infinite case, Order, Volume 4 (1987) no. 2, pp. 107-125 | DOI | MR | Zbl
[2] Poset algebras over well quasi-ordered posets, Algebra Univers., Volume 58 (2008) no. 3, pp. 263-286 | DOI | MR | Zbl
[3] Jónsson posets, Algebra Univers., Volume 79 (2018) no. 3, 74 | DOI | MR | Zbl
[4] On the cardinality of the set of initial intervals of a partially ordered set, Infinite sets, Keszthely, 1973 (NATO ASI Series. Series C. Mathematical and Physical Sciences), Volume 3, North-Holland, Amsterdam, 1975, pp. 189-198 | Zbl
[5] A decomposition theorem for partially ordered sets, Ann. Math., Volume 51 (1950), pp. 161-166 | DOI | MR | Zbl
[6] Another note on Dilworth’s theorem in the infinite case (2008) (7 pp., https://www.dorais.org/assets/pdf/abraham.pdf)
[7] A note on conjectures of F. Galvin and R. Rado, Can. Math. Bull., Volume 56 (2013) no. 2, pp. 317-325 | DOI | MR | Zbl
[8] Partially ordered sets, Am. J. Math., Volume 63 (1941), pp. 600-610 | DOI | MR | Zbl
[9] Theory of relations, Studies in Logic and the Foundations of Mathematics, 145, North-Holland, 2000 (with an appendix by Norbert Sauer) | MR | Zbl
[10] On the cofinality of partially ordered sets, Ordered sets (Banff, Alta., 1981) (NATO ASI Series. Series C. Mathematical and Physical Sciences), Volume 83, Reidel, Dordrecht-Boston, Mass., 1982, pp. 279-298 | DOI | MR | Zbl
[11] Antichain decompositions of a partially ordered set, Sets, graphs and numbers (Budapest, 1991) (Colloquia Mathematica Societatis János Bolyai), Volume 60, North-Holland, 1992, pp. 469-498 | MR | Zbl
[12] The cofinality of a partially ordered set, Proc. Lond. Math. Soc., Volume 46 (1983) no. 3, pp. 454-470 | DOI | MR | Zbl
[13] On Dilworth’s theorem in the infinite case, Isr. J. Math., Volume 1 (1963), pp. 108-109 | DOI | MR | Zbl
[14] Ensemble ordonné universel recouvert par deux chaines, J. Comb. Theory, Ser. B, Volume 25 (1978) no. 1, pp. 1-25 | DOI | MR | Zbl
[15] Parties cofinales des ordres partiels ne contenant pas d’antichaine infinie (1980) (unpublished)
[16] Theorems on intervals of ordered sets, Discrete Math., Volume 35 (1981), pp. 199-201 | DOI | MR | Zbl
[17] On a conjecture of R. Rado, J. Lond. Math. Soc., Volume 27 (1983) no. 1, pp. 1-8 | DOI | MR | Zbl
[18] Conjectures of Rado and Chang and cardinal arithmetic, Finite and infinite combinatorics in sets and logic (Banff, AB, 1991) (NATO ASI Series. Series C. Mathematical and Physical Sciences), Volume 411, Kluwer Academic Publishers, 1993, pp. 385-398 | DOI | MR | Zbl
[19] Combinatorial dychotomies in set theory, Bull. Symb. Log., Volume 17 (2011) no. 1, pp. 1-72 | DOI | MR | Zbl
[20] On decompositions of partially ordered sets, Proc. Am. Math. Soc., Volume 15 (1964), pp. 197-199 | DOI | MR | Zbl
Cité par Sources :
Commentaires - Politique