Let be an integer. In this paper, we prove that if is an asymptotic basis of order and is a nonempty subset of , then either there exists a finite subset of such that is an asymptotic basis of order , or for any , there exists a finite subset of such that , where denotes the lower asymptotic density of and denotes the set of all with . This generalizes a result of Nathanson and Sárközy.
Accepted:
Published online:
Ji-Zhen Xu 1, 2; Yong-Gao Chen 1

@article{CRMATH_2024__362_G1_45_0, author = {Ji-Zhen Xu and Yong-Gao Chen}, title = {On subsets of asymptotic bases}, journal = {Comptes Rendus. Math\'ematique}, pages = {45--49}, publisher = {Acad\'emie des sciences, Paris}, volume = {362}, year = {2024}, doi = {10.5802/crmath.513}, language = {en}, }
Ji-Zhen Xu; Yong-Gao Chen. On subsets of asymptotic bases. Comptes Rendus. Mathématique, Volume 362 (2024), pp. 45-49. doi : 10.5802/crmath.513. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.513/
[1] On minimal asymptotic bases, Eur. J. Comb., Volume 32 (2011) no. 8, pp. 1329-1335 | DOI | MR | Zbl
[2] On a problem of Nathanson, Acta Arith., Volume 185 (2018) no. 3, pp. 275-280 | DOI | MR | Zbl
[3] Minimal asymptotic bases with prescribed densities, Ill. J. Math., Volume 32 (1988) no. 3, pp. 562-574 | MR | Zbl
[4] Ein Beitrag zur Theorie der Minimalbasen, J. Reine Angew. Math., Volume 196 (1956), pp. 170-204 | DOI | MR | Zbl
[5] Dense minimal asymptotic bases of order , J. Number Theory, Volume 130 (2010) no. 3, pp. 580-585 | DOI | MR | Zbl
[6] Abschätzung der asymptotischen Dichte von Summenmengen, Math. Z., Volume 58 (1953), pp. 459-484 | DOI | Zbl
[7] Minimal bases and maximal nonbases in additive number theory, J. Number Theory, Volume 6 (1974), pp. 324-333 | DOI | MR | Zbl
[8] Minimal bases and powers of , Acta Arith., Volume 51 (1988) no. 5, pp. 95-102
[9] On the maximum density of minimal asymptotic bases, Proc. Am. Math. Soc., Volume 105 (1989) no. 1, pp. 31-33 | DOI | MR | Zbl
[10] Gelöste und ungelöste Fragen über Basen der natüurlichen Zahlenreihe, J. Reine Angew. Math., Volume 194 (1955), pp. 111-140 | DOI | Zbl
[11] On a problem of Nathanson on minimal asymptotic bases, J. Number Theory, Volume 218 (2021), pp. 152-160 | MR | Zbl
[12] On asymptotic bases and minimal asymptotic bases, Colloq. Math., Volume 170 (2022) no. 1, pp. 65-77 | DOI | MR | Zbl
Cited by Sources:
Comments - Policy