It was proven in [1], that the étale fundamental group of a connected smooth projective variety over an algebraically closed field is topologically finitely presented. In this note, we extend this result to all connected proper schemes over .
Il a été prouvé dans [1], que le groupe fondamental étale d’une variété projective lisse connexe sur un corps algébriquement clos est topologiquement de présentation finie. Dans cette note, nous étendons ce résultat à tous les schémas propres connexes sur .
Revised:
Accepted:
Published online:
Marcin Lara 1; Vasudevan Srinivas 2; Jakob Stix 3

@article{CRMATH_2024__362_G1_51_0, author = {Marcin Lara and Vasudevan Srinivas and Jakob Stix}, title = {Fundamental groups of proper varieties are finitely presented}, journal = {Comptes Rendus. Math\'ematique}, pages = {51--54}, publisher = {Acad\'emie des sciences, Paris}, volume = {362}, year = {2024}, doi = {10.5802/crmath.518}, language = {en}, }
TY - JOUR AU - Marcin Lara AU - Vasudevan Srinivas AU - Jakob Stix TI - Fundamental groups of proper varieties are finitely presented JO - Comptes Rendus. Mathématique PY - 2024 SP - 51 EP - 54 VL - 362 PB - Académie des sciences, Paris DO - 10.5802/crmath.518 LA - en ID - CRMATH_2024__362_G1_51_0 ER -
Marcin Lara; Vasudevan Srinivas; Jakob Stix. Fundamental groups of proper varieties are finitely presented. Comptes Rendus. Mathématique, Volume 362 (2024), pp. 51-54. doi : 10.5802/crmath.518. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.518/
[1] Finite presentation of the tame fundamental group, Sel. Math., New Ser., Volume 28 (2022) no. 2, 37, 19 pages | DOI | MR | Zbl
[2] An obstruction to lifting to characteristic , Algebr. Geom., Volume 10 (2023) no. 3, pp. 327-347 | DOI | MR | Zbl
[3] Revêtements étales et groupe fondamental (SGA1) (Alexander Grothendieck, ed.), Documents Mathématiques, 3, Société Mathématique de France, 2003, xviii+327 pages (Séminaire de géométrie algébrique du Bois Marie 1960–61., Directed by A. Grothendieck, With two papers by M. Raynaud, Updated and annotated reprint of the 1971 original) | MR
[4] Triangulations of algebraic sets, Algebraic geometry (Arcata, Calif., 1974) (Proc. Sympos. Pure Math.), Volume 29, American Mathematical Society (1975), pp. 165-185 | DOI | MR | Zbl
[5] Algebraic extensions of finite corank of Hilbertian fields, Isr. J. Math., Volume 18 (1974), pp. 279-307 | DOI | MR | Zbl
[6] Smoothness, semi-stability and alterations, IHES Publ. Math., Volume 83 (1996), pp. 51-93 | Numdam | MR | Zbl
[7] Triangulation of semi-analytic sets, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume 18 (1964), pp. 449-474 | Numdam | MR | Zbl
[8] Pro-finite presentations, J. Algebra, Volume 242 (2001) no. 2, pp. 672-690 | DOI | MR | Zbl
[9] Balanced presentations for fundamental groups of curves over finite fields, Math. Res. Lett., Volume 29 (2022) no. 4, pp. 1251-1259 | DOI | MR | Zbl
[10] A general Seifert-Van Kampen theorem for algebraic fundamental groups, Publ. Res. Inst. Math. Sci., Volume 42 (2006) no. 3, pp. 763-786 | DOI | MR | Zbl
Cited by Sources:
Comments - Policy