Comptes Rendus
Géométrie algébrique
Non-linear bi-algebraic curves and surfaces in moduli spaces of Abelian differentials
[Courbes et surfaces bi-algébriques non-linéaires dans les espaces de modules de différentielles abéliennes]
Comptes Rendus. Mathématique, Volume 361 (2023), pp. 1691-1698.

Les strates des espaces de modules de différentielles abéliennes sont des espaces non-homogènes possédant des structures bi-algébriques naturelles. Partiellement inspirés par le cas des espaces homogènes bi-algébriques (comme les tores, les variétés abéliennes et les variétés de Shimura), Klingler et Lerer ont récemment montré qu’une courbe bi-algébrique dans un strate d’un espace de modules de différentielles abéliennes est linéaire pourvu que la soi-disant condition () est satisfaite.

Dans cette note, on construit une courbe, resp. surface, bi-algébrique non-linéaire de différentielles abéliennes de genre 7, resp. 10.

The strata of the moduli spaces of Abelian differentials are non-homogenous spaces carrying natural bi-algebraic structures. Partly inspired by the case of homogenous spaces carrying bi-algebraic structures (such as torii, Abelian varieties and Shimura varieties), Klingler and Lerer recently showed that any bi-algebraic curve in a stratum of the moduli space of Abelian differentials is linear provided that the so-called condition () is fulfilled.

In this note, we construct a non-linear bi-algebraic curve, resp. surface, of Abelian differentials of genus 7, resp. 10.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.529

Bertrand Deroin 1 ; Carlos Matheus 2

1 CNRS & Université de Cergy-Pontoise (UMR CNRS 8088), 95302, Cergy-Pontoise, France
2 CNRS & École Polytechnique (UMR CNRS 7640), 91128, Palaiseau, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2023__361_G10_1691_0,
     author = {Bertrand Deroin and Carlos Matheus},
     title = {Non-linear bi-algebraic curves and surfaces in moduli spaces of {Abelian} differentials},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1691--1698},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {361},
     year = {2023},
     doi = {10.5802/crmath.529},
     language = {en},
}
TY  - JOUR
AU  - Bertrand Deroin
AU  - Carlos Matheus
TI  - Non-linear bi-algebraic curves and surfaces in moduli spaces of Abelian differentials
JO  - Comptes Rendus. Mathématique
PY  - 2023
SP  - 1691
EP  - 1698
VL  - 361
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.529
LA  - en
ID  - CRMATH_2023__361_G10_1691_0
ER  - 
%0 Journal Article
%A Bertrand Deroin
%A Carlos Matheus
%T Non-linear bi-algebraic curves and surfaces in moduli spaces of Abelian differentials
%J Comptes Rendus. Mathématique
%D 2023
%P 1691-1698
%V 361
%I Académie des sciences, Paris
%R 10.5802/crmath.529
%G en
%F CRMATH_2023__361_G10_1691_0
Bertrand Deroin; Carlos Matheus. Non-linear bi-algebraic curves and surfaces in moduli spaces of Abelian differentials. Comptes Rendus. Mathématique, Volume 361 (2023), pp. 1691-1698. doi : 10.5802/crmath.529. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.529/

[1] Artur Avila; Carlos Matheus; Jean-Christophe Yoccoz The Kontsevich-Zorich cocycle over Veech-McMullen family of symmetric translation surfaces, J. Mod. Dyn., Volume 14 (2019), pp. 21-54 | DOI | MR | Zbl

[2] Benjamin Bakker; Bruno Klingler; Jacob Tsimerman Tame topology of arithmetic quotients and algebraicity of Hodge loci, J. Am. Math. Soc., Volume 33 (2020) no. 4, pp. 917-939 | DOI | MR | Zbl

[3] Gregorio Baldi; Bruno Klingler; Emmanuel Ullmo On the distribution of the Hodge locus (2021) | arXiv

[4] C. Herbert Clemens A scrapbook of complex curve theory, University Series in Mathematics, Plenum Press, 1980, ix+186 pages

[5] Alex Eskin; Maryam Mirzakhani Invariant and stationary measures for the SL(2,) action on moduli space, Publ. Math., Inst. Hautes Étud. Sci., Volume 127 (2018), pp. 95-324 | DOI | MR | Zbl

[6] Alex Eskin; Maryam Mirzakhani; Amir Mohammadi Isolation, equidistribution, and orbit closures for the SL(2,) action on moduli space, Ann. Math., Volume 182 (2015) no. 2, pp. 673-721 | DOI | MR | Zbl

[7] Giovanni Forni; Carlos Matheus; Anton Zorich Square-tiled cyclic covers, J. Mod. Dyn., Volume 5 (2011) no. 2, pp. 285-318 | DOI | MR | Zbl

[8] Eugene Gutkin; Chris Judge Affine mappings of translation surfaces: geometry and arithmetic, Duke Math. J., Volume 103 (2000) no. 2, pp. 191-213 | MR | Zbl

[9] Bruno Klingler; Leonardo A. Lerer Abelian differentials and their periods: the bi-algebraic point of view (2022) | arXiv

[10] Bruno Klingler; Emmanuel Ullmo; Andrei Yafaev Bi-algebraic geometry and the André-Oort conjecture, Algebraic geometry: Salt Lake City 2015 (Proceedings of Symposia in Pure Mathematics), Volume 97.2, American Mathematical Society, 2018, pp. 319-359 | Zbl

[11] Carlos Matheus; Jean-Christophe Yoccoz The action of the affine diffeomorphisms on the relative homology group of certain exceptionally symmetric origamis, J. Mod. Dyn., Volume 4 (2010) no. 3, pp. 453-486 | DOI | MR | Zbl

[12] Curtis T. McMullen Braid groups and Hodge theory, Math. Ann., Volume 355 (2013) no. 3, pp. 893-946 | DOI | MR | Zbl

[13] Martin Möller Shimura and Teichmüller curves, J. Mod. Dyn., Volume 5 (2011) no. 1, pp. 1-32 | DOI | Zbl

[14] Claire Voisin Théorie de Hodge et géométrie algébrique complexe, Cours Spécialisés (Paris), 10, Société Mathématique de France, 2002, viii+595 pages

Cité par Sources :

Commentaires - Politique