[Courbes et surfaces bi-algébriques non-linéaires dans les espaces de modules de différentielles abéliennes]
Les strates des espaces de modules de différentielles abéliennes sont des espaces non-homogènes possédant des structures bi-algébriques naturelles. Partiellement inspirés par le cas des espaces homogènes bi-algébriques (comme les tores, les variétés abéliennes et les variétés de Shimura), Klingler et Lerer ont récemment montré qu’une courbe bi-algébrique dans un strate d’un espace de modules de différentielles abéliennes est linéaire pourvu que la soi-disant condition est satisfaite.
Dans cette note, on construit une courbe, resp. surface, bi-algébrique non-linéaire de différentielles abéliennes de genre , resp. .
The strata of the moduli spaces of Abelian differentials are non-homogenous spaces carrying natural bi-algebraic structures. Partly inspired by the case of homogenous spaces carrying bi-algebraic structures (such as torii, Abelian varieties and Shimura varieties), Klingler and Lerer recently showed that any bi-algebraic curve in a stratum of the moduli space of Abelian differentials is linear provided that the so-called condition is fulfilled.
In this note, we construct a non-linear bi-algebraic curve, resp. surface, of Abelian differentials of genus , resp. .
Révisé le :
Accepté le :
Publié le :
Bertrand Deroin 1 ; Carlos Matheus 2
@article{CRMATH_2023__361_G10_1691_0, author = {Bertrand Deroin and Carlos Matheus}, title = {Non-linear bi-algebraic curves and surfaces in moduli spaces of {Abelian} differentials}, journal = {Comptes Rendus. Math\'ematique}, pages = {1691--1698}, publisher = {Acad\'emie des sciences, Paris}, volume = {361}, year = {2023}, doi = {10.5802/crmath.529}, language = {en}, }
TY - JOUR AU - Bertrand Deroin AU - Carlos Matheus TI - Non-linear bi-algebraic curves and surfaces in moduli spaces of Abelian differentials JO - Comptes Rendus. Mathématique PY - 2023 SP - 1691 EP - 1698 VL - 361 PB - Académie des sciences, Paris DO - 10.5802/crmath.529 LA - en ID - CRMATH_2023__361_G10_1691_0 ER -
Bertrand Deroin; Carlos Matheus. Non-linear bi-algebraic curves and surfaces in moduli spaces of Abelian differentials. Comptes Rendus. Mathématique, Volume 361 (2023), pp. 1691-1698. doi : 10.5802/crmath.529. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.529/
[1] The Kontsevich-Zorich cocycle over Veech-McMullen family of symmetric translation surfaces, J. Mod. Dyn., Volume 14 (2019), pp. 21-54 | DOI | MR | Zbl
[2] Tame topology of arithmetic quotients and algebraicity of Hodge loci, J. Am. Math. Soc., Volume 33 (2020) no. 4, pp. 917-939 | DOI | MR | Zbl
[3] On the distribution of the Hodge locus (2021) | arXiv
[4] A scrapbook of complex curve theory, University Series in Mathematics, Plenum Press, 1980, ix+186 pages
[5] Invariant and stationary measures for the action on moduli space, Publ. Math., Inst. Hautes Étud. Sci., Volume 127 (2018), pp. 95-324 | DOI | MR | Zbl
[6] Isolation, equidistribution, and orbit closures for the action on moduli space, Ann. Math., Volume 182 (2015) no. 2, pp. 673-721 | DOI | MR | Zbl
[7] Square-tiled cyclic covers, J. Mod. Dyn., Volume 5 (2011) no. 2, pp. 285-318 | DOI | MR | Zbl
[8] Affine mappings of translation surfaces: geometry and arithmetic, Duke Math. J., Volume 103 (2000) no. 2, pp. 191-213 | MR | Zbl
[9] Abelian differentials and their periods: the bi-algebraic point of view (2022) | arXiv
[10] Bi-algebraic geometry and the André-Oort conjecture, Algebraic geometry: Salt Lake City 2015 (Proceedings of Symposia in Pure Mathematics), Volume 97.2, American Mathematical Society, 2018, pp. 319-359 | Zbl
[11] The action of the affine diffeomorphisms on the relative homology group of certain exceptionally symmetric origamis, J. Mod. Dyn., Volume 4 (2010) no. 3, pp. 453-486 | DOI | MR | Zbl
[12] Braid groups and Hodge theory, Math. Ann., Volume 355 (2013) no. 3, pp. 893-946 | DOI | MR | Zbl
[13] Shimura and Teichmüller curves, J. Mod. Dyn., Volume 5 (2011) no. 1, pp. 1-32 | DOI | Zbl
[14] Théorie de Hodge et géométrie algébrique complexe, Cours Spécialisés (Paris), 10, Société Mathématique de France, 2002, viii+595 pages
Cité par Sources :
Commentaires - Politique