Comptes Rendus
Géométrie algébrique
Salem numbers of automorphisms of K3 surfaces with Picard number 4
Comptes Rendus. Mathématique, Volume 361 (2023), pp. 1805-1812.

We construct automorphisms of positive entropy of K3 surfaces of Picard number 4 with certain Salem numbers. We also prove that there is a fixed point free automorphism of positive entropy on a K3 surface of Picard number 4 with Salem degree 4.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.533
Classification : 14J28, 14J50
Mots clés : K3 surface, Automorphism, Salem number

Kwangwoo Lee 1

1 Department of Mathematics, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul 03722, Korea
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2023__361_G11_1805_0,
     author = {Kwangwoo Lee},
     title = {Salem numbers of automorphisms of {K3} surfaces with {Picard} number $4$},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1805--1812},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {361},
     year = {2023},
     doi = {10.5802/crmath.533},
     language = {en},
}
TY  - JOUR
AU  - Kwangwoo Lee
TI  - Salem numbers of automorphisms of K3 surfaces with Picard number $4$
JO  - Comptes Rendus. Mathématique
PY  - 2023
SP  - 1805
EP  - 1812
VL  - 361
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.533
LA  - en
ID  - CRMATH_2023__361_G11_1805_0
ER  - 
%0 Journal Article
%A Kwangwoo Lee
%T Salem numbers of automorphisms of K3 surfaces with Picard number $4$
%J Comptes Rendus. Mathématique
%D 2023
%P 1805-1812
%V 361
%I Académie des sciences, Paris
%R 10.5802/crmath.533
%G en
%F CRMATH_2023__361_G11_1805_0
Kwangwoo Lee. Salem numbers of automorphisms of K3 surfaces with Picard number $4$. Comptes Rendus. Mathématique, Volume 361 (2023), pp. 1805-1812. doi : 10.5802/crmath.533. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.533/

[1] Eva Bayer-Fluckiger Isometries of lattices and automorphisms of K3 surfaces (2021) | arXiv

[2] Simon Brandhorst On the stable dynamical spectrum of complex surfaces, Math. Ann., Volume 377 (2020) no. 1-2, pp. 421-434 | DOI | MR | Zbl

[3] Serge Cantat Dynamics of automorphisms of compact complex surfaces, Frontiers in complex dynamics (Princeton Mathematical Series), Volume 51, Princeton University Press, 2014, pp. 463-514 | DOI | MR | Zbl

[4] Mikhaïl Gromov On the entropy of holomorphic maps, Enseign. Math., Volume 49 (2003) no. 3-4, pp. 217-235 | MR | Zbl

[5] Kenji Hashimoto; JongHae Keum; Kwangwoo Lee K3 surfaces with Picard number 2, Salem polynomials and Pell equation, J. Pure Appl. Algebra, Volume 224 (2020) no. 1, pp. 432-443 | DOI | MR | Zbl

[6] Curtis T. McMullen Dynamics on K3 surfaces: Salem numbers and Siegel disks, J. Reine Angew. Math., Volume 545 (2002), pp. 201-233 | MR | Zbl

[7] Curtis T. McMullen K3 surfaces, entropy and glue, J. Reine Angew. Math., Volume 658 (2011), pp. 1-25 | DOI | MR | Zbl

[8] Curtis T. McMullen Automorphisms of projective K3 surfaces with minimum entropy, Invent. Math., Volume 203 (2016) no. 1, pp. 179-215 | DOI | MR | Zbl

[9] Vyacheslav V. Nikulin Integral Symmetric bilinear forms and some of their applications, Math. USSR, Izv., Volume 14 (1980), pp. 103-167 | DOI | Zbl

[10] Keiji Oguiso Free Automorphisms of positive entropy on smooth Kähler surfaces, Algebraic geometry in East Asia – Taipei 2011 (Advanced Studies in Pure Mathematics), Volume 65, Mathematical Society of Japan, 2015, pp. 187-199 | DOI | Zbl

[11] Ilya I. Pjateckiǐ-Šapiro; Igor R. Šhafarevič Torelli’s theorem for algebraic surfaces of type K3, Izv. Akad. Nauk SSSR, Ser. Mat., Volume 35 (1971), pp. 530-572

[12] Paul Reschke Salem numbers and automorphisms of complex surfaces, Math. Res. Lett., Volume 19 (2012) no. 2, pp. 475-482 | DOI | MR | Zbl

[13] Paul Reschke Salem numbers and automorphisms of abelian surfaces, Osaka J. Math., Volume 54 (2017) no. 1, pp. 1-15 | MR | Zbl

[14] Raphael Salem Algebraic numbers and Fourier analysis, The Wadsworth Mathematics Series, Wadsworth International Group, 1983 | MR

[15] Yosef Yomdin Volume growth and entropy, Isr. J. Math., Volume 57 (1987), pp. 285-300 | DOI | MR

[16] ShengYuan Zhao Automorphismes loxodromiques de surfaces abèliennes rèelles, Ann. Fac. Sci. Toulouse, Math., Volume 28 (2019) no. 1, pp. 109-127 | DOI | Numdam | MR | Zbl

Cité par Sources :

Commentaires - Politique