[Densité de systoles de variétés hyperboliques]
We show that for each
Nous démontrons que, pour tout
Accepté le :
Publié le :
DOI : 10.5802/crmath.689
Keywords: Geometric topology, hyperbolic manifolds, systoles, arithmetic groups
Mots-clés : Topologie géométrique, variétés hyperboliques, systoles, groupes arithmétiques
Sami Douba 1 ; Junzhi Huang 2

@article{CRMATH_2024__362_G12_1819_0, author = {Sami Douba and Junzhi Huang}, title = {Density of systoles of hyperbolic manifolds}, journal = {Comptes Rendus. Math\'ematique}, pages = {1819--1824}, publisher = {Acad\'emie des sciences, Paris}, volume = {362}, year = {2024}, doi = {10.5802/crmath.689}, zbl = {07949989}, language = {en}, }
Sami Douba; Junzhi Huang. Density of systoles of hyperbolic manifolds. Comptes Rendus. Mathématique, Volume 362 (2024), pp. 1819-1824. doi : 10.5802/crmath.689. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.689/
[1] Systoles of hyperbolic 4-manifolds (2006) (https://arxiv.org/abs/math/0612290)
[2] The Bianchi groups are separable on geometrically finite subgroups, Ann. Math., Volume 153 (2001) no. 3, pp. 599-621 | DOI | MR | Zbl
[3] Salem numbers and the spectrum of hyperbolic surfaces, Int. Math. Res. Not., Volume 2020 (2020) no. 22, pp. 8234-8250 | DOI | MR | Zbl
[4] Premier nombre de Betti et spectre du laplacien de certaines variétés hyperboliques, Enseign. Math., Volume 46 (2000) no. 1-2, pp. 109-137 | MR | Zbl
[5] Arithmetic subgroups of algebraic groups, Ann. Math., Volume 75 (1962), pp. 485-535 | DOI | MR | Zbl
[6] Hyperplane sections in arithmetic hyperbolic manifolds, J. Lond. Math. Soc., Volume 83 (2011) no. 2, pp. 431-448 | DOI | MR | Zbl
[7] Lectures on hyperbolic geometry, Universitext, Springer, 1992, xiv+330 pages | DOI | MR | Zbl
[8] Systoles of hyperbolic manifolds, Algebr. Geom. Topol., Volume 11 (2011) no. 3, pp. 1455-1469 | DOI | MR | Zbl
[9] Closed geodesics on semi-arithmetic Riemann surfaces, Math. Res. Lett., Volume 29 (2022) no. 4, pp. 961-1001 | DOI | MR | Zbl
[10] Systoles of hyperbolic hybrids (2023) (https://arxiv.org/abs/2309.16051)
[11] Salem numbers and arithmetic hyperbolic groups, Trans. Am. Math. Soc., Volume 372 (2019) no. 1, pp. 329-355 | DOI | MR | Zbl
[12] Bottom of the length spectrum of arithmetic orbifolds, Trans. Am. Math. Soc., Volume 376 (2023) no. 7, pp. 4745-4764 | DOI | MR | Zbl
[13] Homotopy type and volume of locally symmetric manifolds, Duke Math. J., Volume 124 (2004) no. 3, pp. 459-515 | DOI | MR | Zbl
[14] Automorphic spectra and the conformal bootstrap, Commun. Am. Math. Soc., Volume 4 (2024), pp. 1-63 | DOI | MR | Zbl
[15] Factorization of certain cyclotomic functions, Ann. Math., Volume 34 (1933) no. 3, pp. 461-479 | DOI | MR | Zbl
[16] Immersions and embeddings of totally geodesic surfaces, Bull. Lond. Math. Soc., Volume 19 (1987) no. 5, pp. 481-484 | DOI | MR | Zbl
[17] The limit points of the bass notes of arithmetic hyperbolic surfaces (2024) (https://arxiv.org/abs/2403.00928)
[18] Discrete subgroups of semisimple Lie groups, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, 17, Springer, 1991, x+388 pages | DOI | MR | Zbl
[19] Quasi-conformal mappings in
[20] Arithmetic of hyperbolic manifolds, Topology ’90 (Columbus, OH, 1990) (Ohio State University Mathematical Research Institute Publications), Volume 1, Walter de Gruyter, 1992, pp. 273-310 | MR | Zbl
[21] Algebraic numbers and Fourier analysis, Selected reprints (The Wadsworth Mathematics Series), Wadsworth, 1983, p. iii+68 | MR | Zbl
[22] Subgroups of surface groups are almost geometric, J. Lond. Math. Soc., Volume 17 (1978) no. 3, pp. 555-565 | DOI | MR | Zbl
[23] Quasi-arithmeticity of lattices in
Cité par Sources :
Commentaires - Politique