[Structures Calabi–Yau sur les quotients de Drinfeld et la conjecture d’Amiot]
En 2009, Claire Amiot a donné une construction de structures de Calabi–Yau sur les quotients de Verdier. Nous esquissons comment la relever au cadre dg. Nous utilisons cette construction comme une étape importante dans l’ébauche de la preuve de la conjecture d’Amiot sur la structure des catégories triangulées 2-Calabi–Yau avec un objet de amas-basculant.
In 2009, Claire Amiot gave a construction of Calabi–Yau structures on Verdier quotients. We sketch how to lift it to the dg setting. We use this construction as an important step in an outline of the proof of her conjecture on the structure of -Calabi–Yau triangulated categories with a cluster-tilting object.
Révisé le :
Accepté le :
Publié le :
Mots clés : Calabi–Yau structure, Verdier quotient, Drinfeld quotient, Amiot’s conjecture
Bernhard Keller 1 ; Junyang Liu 1
@article{CRMATH_2024__362_G2_135_0, author = {Bernhard Keller and Junyang Liu}, title = {Calabi{\textendash}Yau structures on {Drinfeld} quotients and {Amiot{\textquoteright}s} conjecture}, journal = {Comptes Rendus. Math\'ematique}, pages = {135--142}, publisher = {Acad\'emie des sciences, Paris}, volume = {362}, year = {2024}, doi = {10.5802/crmath.541}, language = {en}, }
Bernhard Keller; Junyang Liu. Calabi–Yau structures on Drinfeld quotients and Amiot’s conjecture. Comptes Rendus. Mathématique, Volume 362 (2024), pp. 135-142. doi : 10.5802/crmath.541. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.541/
[1] Cluster categories for algebras of global dimension and quivers with potential, Ann. Inst. Fourier, Volume 59 (2009) no. 6, pp. 2525-2590 | DOI | Numdam | MR | Zbl
[2] On generalized cluster categories, Representations of algebras and related topics (EMS Series of Congress Reports), European Mathematical Society, 2011, pp. 1-53 | MR | Zbl
[3] Preprojective algebras and -sortable words, Proc. Lond. Math. Soc., Volume 104 (2012) no. 3, pp. 513-539 | DOI | MR | Zbl
[4] The ubiquity of generalized cluster categories, Adv. Math., Volume 226 (2011) no. 4, pp. 3813-3849 | DOI | MR | Zbl
[5] Calabi–Yau algebras and superpotentials, Sel. Math., New Ser., Volume 21 (2015) no. 2, pp. 555-603 | DOI | MR | Zbl
[6] Graded Calabi–Yau algebras of dimension 3, J. Pure Appl. Algebra, Volume 212 (2008) no. 1, pp. 14-32 | DOI | MR | Zbl
[7] Quivers with potentials and their representations I: Mutations, Mathematica, Volume 14 (2008) no. 1, pp. 59-119 | MR | Zbl
[8] DG quotients of DG categories, J. Algebra, Volume 272 (2004) no. 2, pp. 643-691 | DOI | MR | Zbl
[9] Monomial Gorenstein algebras and the stably Calabi–Yau property, Algebr. Represent. Theory, Volume 24 (2021) no. 4, pp. 1083-1099 | MR | Zbl
[10] Calabi–Yau algebras | arXiv
[11] Relative singularity categories III: Cluster resolutions (2006) | arXiv
[12] Relative singularity categories I: Auslander resolutions, Adv. Math., Volume 301 (2016), pp. 973-1021 | DOI | MR | Zbl
[13] Invariance and localization for cyclic homology of DG algebras, J. Pure Appl. Algebra, Volume 123 (1998) no. 1-3, pp. 223-273 | DOI | MR | Zbl
[14] On the cyclic homology of exact categories, J. Pure Appl. Algebra, Volume 136 (1999) no. 1, pp. 1-56 | DOI | MR | Zbl
[15] On Amiot’s conjecture (arXiv:2311.06538 [math.RT])
[16] Cluster-tilted algebras are Gorenstein and stably Calabi–Yau, Adv. Math., Volume 211 (2007) no. 1, pp. 123-151 | DOI | MR | Zbl
[17] Derived equivalences from mutations of quivers with potential, Adv. Math., Volume 26 (2011) no. 3, pp. 2118-2168 | DOI | MR | Zbl
Cité par Sources :
Commentaires - Politique