[Sur les fonctions de Dehn d’une classe de monoïdes monadiques à une relation]
Nous donnons une famille infinie de monoïdes (pour ), chacun avec une seule relation de définition de la forme , telle que la fonction de Dehn de est au moins exponentielle. Plus précisément, nous démontrons que la fonction de Dehn de satisfait à . Cela répond négativement à une question posée par Cain & Maltcev en 2013, à savoir si tout monoïde défini par une seule relation de la forme possède une fonction de Dehn quadratique. Enfin, en utilisant la décidabilité du problème de l’appartenance à un sous-ensemble rationnel dans les groupes métabéliens de Baumslag–Solitar pour tout , prouvée récemment par Cadilhac, Chistikov & Zetzsche, nous montrons que chaque a un problème de mots décidable.
We give an infinite family of monoids (for ), each with a single defining relation of the form , such that the Dehn function of is at least exponential. More precisely, we prove that the Dehn function of satisfies . This answers negatively a question posed by Cain & Maltcev in 2013 on whether every monoid defined by a single relation of the form has quadratic Dehn function. Finally, by using the decidability of the rational subset membership problem in the metabelian Baumslag–Solitar groups for all , proved recently by Cadilhac, Chistikov & Zetzsche, we show that each has decidable word problem.
Révisé le :
Accepté le :
Publié le :
Carl-Fredrik Nyberg-Brodda 1
@article{CRMATH_2024__362_G7_713_0, author = {Carl-Fredrik Nyberg-Brodda}, title = {On the {Dehn} functions of a class of monadic one-relation monoids}, journal = {Comptes Rendus. Math\'ematique}, pages = {713--730}, publisher = {Acad\'emie des sciences, Paris}, volume = {362}, year = {2024}, doi = {10.5802/crmath.554}, language = {en}, }
Carl-Fredrik Nyberg-Brodda. On the Dehn functions of a class of monadic one-relation monoids. Comptes Rendus. Mathématique, Volume 362 (2024), pp. 713-730. doi : 10.5802/crmath.554. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.554/
[1] Defining relations and algorithmic problems for groups and semigroups, Proceedings of the Steklov Institute of Mathematics, 85, American Mathematical Society, 1966 (Translated from the Russian by M. Greendlinger) | MR | Zbl
[2] Word transformations in a semigroup that is given by a system of defining relations, Algebra Logic, Volume 15 (1976), pp. 379-386 [Algebra i Logika 15, 6 (1976)] | DOI
[3] On the word and divisibility problems in semigroups with a single defining relation, Math. USSR, Izv., Volume 12 (1978), pp. 207-212 [Izv. Akad. Nauk SSSR Ser. Mat. 42, 2 (1978)] | Zbl
[4] On the word and divisibility problems for semigroups with one relation, Math. Notes, Volume 41 (1987), pp. 235-240 [Mat. Zametki 41, 3 (1987)] | DOI
[5] A non-cyclic one-relator group all of whose finite quotients are cyclic, J. Aust. Math. Soc., Volume 10 (1969), pp. 497-498 | DOI | MR | Zbl
[6] Positive one-relator groups, Trans. Am. Math. Soc., Volume 156 (1971), pp. 165-183 | DOI | Zbl
[7] Automatic groups and amalgams, J. Pure Appl. Algebra, Volume 76 (1991) no. 3, pp. 229-316 | DOI | MR | Zbl
[8] Semigroups presented by a single relation, Ph. D. Thesis, Pennsylvania State University, USA (1993)
[9] Rational subsets of Baumslag-Solitar groups, 47th International Colloquium on Automata, Languages, and Programming (Leibniz International Proceedings in Informatics LIPIcs), Volume 168, Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, 2020, 116 | MR
[10] Monoids Mon admit finite complete rewriting systems (2013) (https://arxiv.org/abs/1302.2819v1)
[11] Monoids Mon admit finite complete rewriting systems (2013) (https://arxiv.org/abs/1302.0982)
[12] Commensurability of Baumslag-Solitar groups, Indiana Univ. Math. J., Volume 70 (2021) no. 6, pp. 2527-2555 | DOI | MR | Zbl
[13] Word processing in groups, Jones and Bartlett Publishers, Boston, 1992 | DOI | MR | Zbl
[14] Dehn functions and -norms of finite presentations, Algorithms and classification in combinatorial group theory (Berkeley, CA, 1989) (Mathematical Sciences Research Institute Publications), Volume 23, Springer, 1992, pp. 195-224 | DOI | MR | Zbl
[15] Algorithms in geometric group theory, Ph. D. Thesis (1999), 127 pages (University of California, Berkeley, USA) | MR
[16] A Lyndon’s identity theorem for one-relator monoids, Sel. Math., New Ser., Volume 28 (2022) no. 3, 59 | DOI | MR | Zbl
[17] Conditions for the embeddability of semigroups into groups, Mat. Zametki, Volume 56 (1994) no. 2, pp. 3-14 | DOI | MR | Zbl
[18] On a relation between the word problem and the word divisibility problem for semigroups with one defining relation, Izv. Math., Volume 61 (1997) no. 6, pp. 1137-1169 [Izv. Ross. Akad. Nauk Ser. Mat. 61, 6 (1997)] | DOI | Zbl
[19] A geometric characterization of automatic semigroups, Theor. Comput. Sci., Volume 369 (2006) no. 1-3, pp. 300-313 | DOI | MR | Zbl
[20] On one-relator inverse monoids and one-relator groups, J. Pure Appl. Algebra, Volume 159 (2001) no. 1, pp. 83-111 | DOI | Zbl
[21] Finite homotopy bases of one-relator monoids, J. Algebra, Volume 229 (2000) no. 2, pp. 547-569 | DOI | MR | Zbl
[22] The rational subset membership problem for groups: a survey, Groups St Andrews 2013 (London Mathematical Society Lecture Note Series), Volume 422, Cambridge University Press, 2015, pp. 368-389 | DOI | MR | Zbl
[23] Das Identitätsproblem für Gruppen mit einer definierenden Relation, Math. Ann., Volume 106 (1932) no. 1, pp. 295-307 | DOI | Zbl
[24] Combinatorial group theory: Presentations of groups in terms of generators and relations, Interscience Publishers [John Wiley & Sons], New York-London-Sydney, 1966 | MR | Zbl
[25] The word problem for one-relation monoids: a survey, Semigroup Forum, Volume 103 (2021) no. 2, pp. 297-355 | DOI | MR | Zbl
[26] Semigroups with one relation and semigroups without cycles, Math. USSR, Izv., Volume 20 (1983), pp. 89-95 [Izv. Akad. Nauk SSSR Ser. Mat. 46 (1982)] | DOI | Zbl
[27] The isomorphism problem for semigroups with one defining relation, Math. Notes, Volume 35 (1984), pp. 360-363 [Mat. Zametki 35, 5 (1984) | DOI | Zbl
[28] Semigroup Presentations, Ph. D. Thesis, University of St Andrews (1995)
[29] Probleme über Veränderungen von Zeichenreihennach gegebenen Regeln, Christiana Videnskabs-Selskabs Skrifter, Volume 10 (1914) | Zbl
[30] Finiteness and Dehn functions of automatic monoids having directed fellow traveller property, Semigroup Forum, Volume 79 (2009) no. 1, pp. 15-21 | DOI | MR | Zbl
Cité par Sources :
Commentaires - Politique