In this paper, the main aim is to give some characterizations of the boundedness of the maximal or nonlinear commutator of the -adic fractional maximal operator with the symbols belong to the -adic Lipschitz spaces in the context of the -adic version of variable Lebesgue spaces, by which some new characterizations of the Lipschitz spaces and nonnegative Lipschitz functions are obtained in the -adic field context. Meanwhile, Some equivalent relations between the -adic Lipschitz norm and the -adic variable Lebesgue norm are also given.
Revised:
Accepted:
Published online:
Keywords: $p$-adic field, Lipschitz function, fractional maximal function, variable exponent Lebesgue space
Jianglong Wu 1; Yunpeng Chang 1

@article{CRMATH_2024__362_G2_177_0, author = {Jianglong Wu and Yunpeng Chang}, title = {Characterization of {Lipschitz} {Spaces} via {Commutators} of {Fractional} {Maximal} {Function} on the $p${-Adic} {Variable} {Exponent} {Lebesgue} {Spaces}}, journal = {Comptes Rendus. Math\'ematique}, pages = {177--194}, publisher = {Acad\'emie des sciences, Paris}, volume = {362}, year = {2024}, doi = {10.5802/crmath.563}, language = {en}, }
TY - JOUR AU - Jianglong Wu AU - Yunpeng Chang TI - Characterization of Lipschitz Spaces via Commutators of Fractional Maximal Function on the $p$-Adic Variable Exponent Lebesgue Spaces JO - Comptes Rendus. Mathématique PY - 2024 SP - 177 EP - 194 VL - 362 PB - Académie des sciences, Paris DO - 10.5802/crmath.563 LA - en ID - CRMATH_2024__362_G2_177_0 ER -
%0 Journal Article %A Jianglong Wu %A Yunpeng Chang %T Characterization of Lipschitz Spaces via Commutators of Fractional Maximal Function on the $p$-Adic Variable Exponent Lebesgue Spaces %J Comptes Rendus. Mathématique %D 2024 %P 177-194 %V 362 %I Académie des sciences, Paris %R 10.5802/crmath.563 %G en %F CRMATH_2024__362_G2_177_0
Jianglong Wu; Yunpeng Chang. Characterization of Lipschitz Spaces via Commutators of Fractional Maximal Function on the $p$-Adic Variable Exponent Lebesgue Spaces. Comptes Rendus. Mathématique, Volume 362 (2024), pp. 177-194. doi : 10.5802/crmath.563. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.563/
[1] A note on maximal commutators and commutators of maximal functions, J. Math. Soc. Japan, Volume 67 (2015) no. 2, pp. 581-593 | MR | Zbl
[2] Harmonic analysis in the -adic Lizorkin spaces: fractional operators, pseudo-differential equations, -adic wavelets, Tauberian theorems, J. Fourier Anal. Appl., Volume 12 (2006) no. 4, pp. 393-425 | DOI | MR | Zbl
[3] Commutators for the maximal and sharp functions, Proc. Am. Math. Soc., Volume 128 (2000) no. 11, pp. 3329-3334 | DOI | MR | Zbl
[4] Stratified Lie groups and potential theory for their sub-Laplacians, Springer Monographs in Mathematics, Springer, 2007
[5] Commutators of singular integrals and fractional integrals on homogeneous spaces, Contemporary Mathematics, 189, American Mathematical Society, 1995, pp. 81-94
[6] Derivative bounds for fractional maximal functions, Trans. Am. Math. Soc., Volume 369 (2017) no. 6, pp. 4063-4092 | DOI | MR | Zbl
[7] Variable exponent Lebesgue spaces and Hardy–Littlewood maximal function on -adic numbers, -Adic Numbers Ultrametric Anal. Appl., Volume 12 (2020) no. 2, pp. 90-111 | DOI | MR | Zbl
[8] Fractional operators in -adic variable exponent Lebesgue spaces and application to -adic derivative, J. Funct. Spaces, Volume 2021 (2021), 3096701, 9 pages | MR | Zbl
[9] -solvability of the Dirichlet problem for nondivergence elliptic equations with VMO coefficients, Trans. Am. Math. Soc., Volume 336 (1993) no. 2, pp. 841-853 | MR | Zbl
[10] Factorization theorems for Hardy spaces in several variables, Ann. Math., Volume 103 (1976), pp. 611-635 | DOI | MR | Zbl
[11] The boundedness of classical operators on variable spaces, Ann. Acad. Sci. Fenn., Math., Volume 31 (2006) no. 1, pp. 239-264 | MR | Zbl
[12] Interior estimates in Morrey spaces for strong solutions to nondivergence form equations with discontinuous coefficients, J. Funct. Anal., Volume 112 (1993) no. 2, pp. 241-256 | DOI | MR | Zbl
[13] Hardy spaces on homogeneous groups, Mathematical Notes, 28, Princeton University Press, 1982
[14] Fractional maximal function and its commutators on Orlicz spaces, Anal. Math. Phys., Volume 9 (2017) no. 1, pp. 165-179 | DOI | MR
[15] Characterization of Lipschitz spaces via commutators of maximal function on the -adic vector space, J. Math., Volume 2022 (2022), 7430272, 15 pages | MR
[16] Necessary and sufficient conditions for boundedness of commutators of maximal function on the -adic vector spaces, AIMS Math., Volume 8 (2023) no. 6, pp. 14064-14085 | MR
[17] The boundedness of commutators of rough p-adic fractional Hardy type operators on Herz-type spaces, J. Inequal. Appl., Volume 2021 (2021), 123, 13 pages | MR | Zbl
[18] Mean oscillation and commutators of singular integral operators, Ark. Mat., Volume 16 (1978) no. 1, pp. 263-270 | DOI | MR | Zbl
[19] Non-Haar -adic wavelets and their application to pseudo-differential operators and equations, Appl. Comput. Harmon. Anal., Volume 28 (2010) no. 1, pp. 1-23 | DOI | MR | Zbl
[20] -estimates of maximal operators on the p-adic vector space, Commun. Korean Math. Soc., Volume 24 (2009) no. 3, pp. 367-379 | MR | Zbl
[21] On spaces and , Czech. Math. J., Volume 41 (1991) no. 4, pp. 592-618 | DOI | Zbl
[22] Lipschitz estimates for commutators of -adic fractional Hardy operators, Commun. Math. Res., Volume 31 (2015) no. 2, pp. 131-140 | MR | Zbl
[23] Second order estimates in interpolation theory and applications, Proc. Am. Math. Soc., Volume 110 (1990) no. 4, pp. 961-969 | DOI | MR | Zbl
[24] Characterization of the Besov spaces via the commutator operator of Coifman, Rochberg and Weiss, Indiana Univ. Math. J., Volume 44 (1995) no. 1, pp. 1-17 | MR | Zbl
[25] Cauchy–Dirichlet problem associated to divergence form parabolic equations, Commun. Contemp. Math., Volume 6 (2004) no. 3, pp. 377-393 | DOI | MR | Zbl
[26] -adic Haar multiresolution analysis and pseudo-differential operators, J. Fourier Anal. Appl., Volume 15 (2009) no. 3, pp. 366-393 | DOI | MR | Zbl
[27] Harmonic Analysis: Real-variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Mathematical Series, 43, Princeton University Press, 1993
[28] Fourier Analysis on Local Fields, Mathematical Notes, 15, Princeton University Press, 1975
[29] Some further classes of pseudo-differential operators in the -adic context and their applications, J. Pseudo-Differ. Oper. Appl., Volume 14 (2023) no. 2, 24, 23 pages | MR | Zbl
[30] -adic Analysis and Mathematical Physics, World Scientific, 1994 | DOI
[31] Characterization of Lipschitz space via the commutators of fractional maximal functions on variable lebesgue spaces, Potential Anal., Volume 60 (2024), pp. 703-720 | DOI | MR | Zbl
[32] Characterization of Lipschitz spaces via commutators of the Hardy–Littlewood maximal function, C. R. Math. Acad. Sci. Paris, Volume 355 (2017) no. 3, pp. 336-344 | Numdam | MR | Zbl
[33] Characterization of boundedness of some commutators of maximal functions in terms of Lipschitz spaces, Anal. Math. Phys., Volume 9 (2019) no. 3, pp. 1411-1427 | DOI | MR | Zbl
[34] Some notes on commutators of the fractional maximal function on variable Lebesgue spaces, J. Inequal. Appl., Volume 2019 (2019), 9, 17 pages | DOI | MR | Zbl
[35] Commutators of the fractional maximal functions, Acta Math. Sin., Volume 52 (2009) no. 6, pp. 1235-1238 | MR | Zbl
[36] Commutators for the maximal functions on Lebesgue spaces with variable exponent, Math. Inequal. Appl., Volume 17 (2014) no. 4, pp. 1375-1386 | MR | Zbl
[37] Commutators of the fractional maximal function on variable exponent Lebesgue spaces, Czech. Math. J., Volume 64 (2014) no. 1, pp. 183-197 | DOI | MR | Zbl
[38] Commutators of some maximal functions with Lipschitz function on Orlicz spaces, Mediterr. J. Math., Volume 15 (2018) no. 6, 216, 13 pages | DOI | MR | Zbl
Cited by Sources:
Comments - Policy