In this paper, we propose a general existence theorem for a multi-valued control problem. The proof of the theorem is based on a decomposition result of the weak closure of the set containing all the multi-valued controls and the bathtub principle. We also obtain the optimality condition for the optimal control.
Revised:
Accepted:
Published online:
Keywords: multi-valued control, existence, uniqueness, decomposition, optimality condition
Behrouz Emamizadeh 1, 2; Yichen Liu 3; Mohsen Zivari-Rezapour 4
@article{CRMATH_2024__362_G2_195_0, author = {Behrouz Emamizadeh and Yichen Liu and Mohsen Zivari-Rezapour}, title = {A general existence theorem for a multi-valued control problem}, journal = {Comptes Rendus. Math\'ematique}, pages = {195--202}, publisher = {Acad\'emie des sciences, Paris}, volume = {362}, year = {2024}, doi = {10.5802/crmath.568}, language = {en}, }
TY - JOUR AU - Behrouz Emamizadeh AU - Yichen Liu AU - Mohsen Zivari-Rezapour TI - A general existence theorem for a multi-valued control problem JO - Comptes Rendus. Mathématique PY - 2024 SP - 195 EP - 202 VL - 362 PB - Académie des sciences, Paris DO - 10.5802/crmath.568 LA - en ID - CRMATH_2024__362_G2_195_0 ER -
Behrouz Emamizadeh; Yichen Liu; Mohsen Zivari-Rezapour. A general existence theorem for a multi-valued control problem. Comptes Rendus. Mathématique, Volume 362 (2024), pp. 195-202. doi : 10.5802/crmath.568. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.568/
[1] Optimal location of resources and Steiner symmetry in a population dynamics model in heterogeneous environments, Ann. Fenn. Math., Volume 47 (2022) no. 1, pp. 305-324 | DOI | MR | Zbl
[2] Rearrangements of functions, maximization of convex functionals, and vortex rings, Math. Ann., Volume 276 (1987) no. 2, pp. 225-253 | DOI | MR | Zbl
[3] Variational problems on classes of rearrangements and multiple configurations for steady vortices, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 6 (1989) no. 4, pp. 295-319 | DOI | Numdam | MR | Zbl
[4] Maximisation and minimisation on classes of rearrangements, Proc. R. Soc. Edinb., Sect. A, Math., Volume 119 (1991) no. 3-4, pp. 287-300 | DOI | MR | Zbl
[5] Symmetry breaking and other phenomena in the optimization of eigenvalues for composite membranes, Commun. Math. Phys., Volume 214 (2000) no. 2, pp. 315-337 | DOI | MR | Zbl
[6] Extremal eigenvalue problems for composite membranes. I, II, Appl. Math. Optim., Volume 22 (1990) no. 2, p. 153-167, 169–187 | MR | Zbl
[7] Optimization of the first eigenvalue in problems involving the -Laplacian, Proc. Am. Math. Soc., Volume 137 (2009) no. 5, pp. 1677-1687 | DOI | MR | Zbl
[8] Constrained and unconstrained rearrangement minimization problems related to the -Laplace operator, Isr. J. Math., Volume 206 (2015) no. 1, pp. 281-298 | DOI | MR | Zbl
[9] Bang-bang and multiple valued optimal solutions of control problems related to quasi-linear elliptic equations, SIAM J. Control Optim., Volume 58 (2020) no. 2, pp. 1103-1117 | DOI | MR | Zbl
[10] Elliptic partial differential equations of second order, Classics in Mathematics, Springer, 2001 | DOI
[11] Optimization of the shape and the location of the actuators in an internal control problem, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8), Volume 4 (2001) no. 3, pp. 737-757 | MR | Zbl
[12] Shape variation and optimization. A geometrical analysis, EMS Tracts in Mathematics, 28, European Mathematical Society, 2018, xi+366 pages | DOI
[13] Optimal spatial harvesting strategy and symmetry-breaking, Appl. Math. Optim., Volume 58 (2008) no. 1, pp. 89-110 | DOI | MR | Zbl
[14] Analysis, Graduate Studies in Mathematics, 14, American Mathematical Society, 2001
[15] Rearrangement minimization problems with indefinite external forces, Nonlinear Anal., Theory Methods Appl., Volume 145 (2016), pp. 162-175 | MR | Zbl
[16] Converse symmetry and intermediate energy values in rearrangement optimization problems, SIAM J. Control Optim., Volume 55 (2017) no. 3, pp. 2088-2107 | MR | Zbl
[17] Optimization in problems involving the -Laplacian, Electron. J. Differ. Equ. (2010), 02, 10 pages | MR | Zbl
[18] Optimization problems for eigenvalues of -Laplace equations, J. Math. Anal. Appl., Volume 398 (2013) no. 2, pp. 766-775 | DOI | MR | Zbl
[19] Optimal shape design for elliptic systems, Springer Series in Computational Physics, Springer, 1984, xii+168 pages | DOI
[20] A formula for the sum of weak closed sets in , C. R. Math. Acad. Sci. Paris, Volume 361 (2023), pp. 1635-1639 | MR
Cited by Sources:
Comments - Policy