Comptes Rendus
Article de recherche - Équations aux dérivées partielles
Norm inflation for the derivative nonlinear Schrödinger equation
[Inflation de la norme pour l’équation de Schrödinger non linéaire dérivée]
Comptes Rendus. Mathématique, Volume 362 (2024), pp. 1857-1871.

Dans cette note, nous étudions le caractère mal posé de l’équation de Schrödinger avec perte de dérivée dans la non-linéarité (DNLS) en une dimension d’espace. Plus précisément, en utilisant un développement ternaire-quinaire de la formule de Duhamel, nous prouvons l’inflation de la norme des solutions dans les espaces de Sobolev en dessous de la régularité critique pour l’équation DNLS gaugée. Ce résultat est optimal puisque l’équation DNLS est connue pour être globalement en régularité positive [16]. La principale nouveauté de notre approche est de contrôler la perte de dérivée de la non-linéarité cubique par la non-linéarité quintique avec des données initiales soigneusement choisies.

In this note, we study the ill-posedness problem for the derivative nonlinear Schrödinger equation (DNLS) in the one-dimensional setting. More precisely, by using a ternary-quinary tree expansion of the Duhamel formula we prove norm inflation in Sobolev spaces below the (scaling) critical regularity for the gauged DNLS. This ill-posedness result is sharp since DNLS is known to be globally well-posed in L 2 () [16]. The main novelty of our approach is to control the derivative loss from the cubic nonlinearity by the quintic nonlinearity with carefully chosen initial data.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.566
Classification : 35Q55, 35R25

Yuzhao Wang 1 ; Younes Zine 2, 3

1 School of Mathematics, University of Birmingham, Watson Building, Edgbaston, Birmingham, B15 2TT, United Kingdom
2 School of Mathematics, The University of Edinburgh, and The Maxwell Institute for the Mathematical Sciences, James Clerk Maxwell Building, The King’s Buildings, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, United Kingdom
3 École Polytechnique Fédérale de Lausanne, 1015 Lausanne Switzerland
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2024__362_G13_1857_0,
     author = {Yuzhao Wang and Younes Zine},
     title = {Norm inflation for the derivative nonlinear {Schr\"odinger} equation},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1857--1871},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {362},
     year = {2024},
     doi = {10.5802/crmath.566},
     language = {en},
}
TY  - JOUR
AU  - Yuzhao Wang
AU  - Younes Zine
TI  - Norm inflation for the derivative nonlinear Schrödinger equation
JO  - Comptes Rendus. Mathématique
PY  - 2024
SP  - 1857
EP  - 1871
VL  - 362
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.566
LA  - en
ID  - CRMATH_2024__362_G13_1857_0
ER  - 
%0 Journal Article
%A Yuzhao Wang
%A Younes Zine
%T Norm inflation for the derivative nonlinear Schrödinger equation
%J Comptes Rendus. Mathématique
%D 2024
%P 1857-1871
%V 362
%I Académie des sciences, Paris
%R 10.5802/crmath.566
%G en
%F CRMATH_2024__362_G13_1857_0
Yuzhao Wang; Younes Zine. Norm inflation for the derivative nonlinear Schrödinger equation. Comptes Rendus. Mathématique, Volume 362 (2024), pp. 1857-1871. doi : 10.5802/crmath.566. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.566/

[1] H. A. Biagioni; F. Linares Ill-posedness for the derivative Schrödinger and generalized Benjamin–Ono equations, Trans. Am. Math. Soc., Volume 353 (2001) no. 9, pp. 3649-3659 | DOI | Zbl

[2] J. Bourgain Invariant measures for the 2D-defocusing nonlinear Schrödinger equation, Commun. Math. Phys., Volume 176 (1996) no. 2, pp. 421-445 | DOI | Zbl

[3] H. Bahouri; G. Perelman Global well-posedness for the derivative nonlinear Schrödinger equation, Invent. Math., Volume 229 (2022) no. 2, pp. 639-688 | DOI | Zbl

[4] I. Bejenaru; T. Tao Sharp well-posedness and ill-posedness results for a quadratic non-linear Schrödinger equation, J. Funct. Anal., Volume 233 (2006) no. 1, pp. 228-259 | DOI | Zbl

[5] M. Christ; J. Colliander; T. Tao Asymptotics, frequency modulation, and low regularity ill-posedness for canonical defocusing equations, Am. J. Math., Volume 125 (2003) no. 6, pp. 1235-1293 | DOI | Zbl

[6] M. Christ; J. Colliander; T. Tao Ill-posedness for nonlinear Schrödinger and wave equations (2003) (https://arxiv.org/abs/0311048)

[7] M. Christ; J. Colliander; T. Tao Instability of the Periodic Nonlinear Schrödinger Equation (2003) (https://arxiv.org/abs/math/0311227)

[8] I. Chevyrev Norm inflation for a non-linear heat equation with Gaussian initial conditions (2023) (https://arxiv.org/abs/2205.14350)

[9] M. Christ Power series solution of a nonlinear Schrödinger equation, Mathematical aspects of nonlinear dispersive equations (Annals of Mathematics Studies), Volume 163, Princeton University Press, Princeton, 2007, pp. 131-155 | Zbl

[10] R. Carles; T. Kappeler Norm-inflation with infinite loss of regularity for periodic NLS equations in negative Sobolev spaces, Bull. Soc. Math. Fr., Volume 145 (2017) no. 4, pp. 623-642 | DOI | Zbl

[11] I. Chevyrev; T. Oh; Y. Wang Norm inflation for the cubic nonlinear heat equation above the scaling critical regularity (2022) (https://arxiv.org/abs/2205.14488)

[12] A. Choffrut; O. Pocovnicu Ill-posedness of the cubic half-wave equation and other fractional NLS on the real line, Int. Math. Res. Not., Volume 2018 (2018) no. 3, pp. 699-738 | DOI | Zbl

[13] Y. Deng; A. R. Nahmod; H. Yue Optimal local well-posedness for the periodic derivative nonlinear Schrödinger equation, Commun. Math. Phys., Volume 384 (2021) no. 2, pp. 1061-1107 | DOI | Zbl

[14] Y. Deng; A. R. Nahmod; H. Yue Invariant Gibbs measures and global strong solutions for nonlinear Schrödinger equations in dimension two (2024) (https://arxiv.org/abs/1910.08492)

[15] J. Forlano; M. Okamoto A remark on norm inflation for nonlinear wave equations, Dyn. Partial Differ. Equ., Volume 17 (2020) no. 4, pp. 361-381 | DOI | Zbl

[16] S. Herr On the Cauchy problem for the derivative nonlinear Schrödinger equation with periodic boundary condition, Int. Math. Res. Not., Volume 2006 (2006) no. 8, 96763 | DOI | Zbl

[17] S. Herr Well-posedness results for dispersive equations with derivative nonlinearities, Ph. D. Thesis, Dortmund University, Germany (2006)

[18] B. Harrop-Griffiths; R. Killip; M. Ntekoume; M. Visan Global well-posedness for the derivative nonlinear Schrödinger equation in L 2 () (2023) (https://arxiv.org/abs/2204.12548)

[19] B. Harrop-Griffiths; R. Killip; M. Visan Large-data equicontinuity for the derivative NLS (2021) (https://arxiv.org/abs/2106.13333)

[20] T. Iwabuchi; T. Ogawa Ill-posedness for the nonlinear Schrödinger equation with quadratic non-linearity in low dimensions, Trans. Am. Math. Soc., Volume 367 (2015) no. 4, pp. 2613-2630 | DOI | Zbl

[21] N. Kishimoto A remark on norm inflation for nonlinear Schrödinger equations, Commun. Pure Appl. Anal., Volume 18 (2019) no. 3, pp. 1375-1402 | DOI | Zbl

[22] D. J. Kaup; A. C. Newell An exact solution for a derivative nonlinear Schrödinger equation, J. Math. Phys., Volume 19 (1978) no. 4, pp. 798-801 | DOI | Zbl

[23] R. Killip; M. Ntekoume; M. Visan On the well-posedness problem for the derivative nonlinear Schrödinger equation (2021) (https://arxiv.org/abs/2101.12274v1)

[24] K. Mio; T. Ogino; K. Minami; S. Takeda Modified nonlinear Schrödinger equation for Alfvén waves propagating along the magnetic field in cold plasmas, J. Phys. Soc. Japan, Volume 41 (1976) no. 1, pp. 265-271 | DOI | Zbl

[25] R. Mosincat Global well-posedness of the derivative nonlinear Schrödinger equation with periodic boundary condition in H 1 2 , J. Differ. Equations, Volume 263 (2017) no. 8, pp. 4658-4722 | DOI | Zbl

[26] A. R. Nahmod; T. Oh; L. Rey-Bellet; G. Staffilani Invariant weighted Wiener measures and almost sure global well-posedness for the periodic derivative NLS, J. Eur. Math. Soc., Volume 14 (2012) no. 4, pp. 1275-1330 | DOI | Zbl

[27] T. Oh A remark on norm inflation with general initial data for the cubic nonlinear Schrödinger equations in negative Sobolev spaces, Funkc. Ekvacioj, Ser. Int., Volume 60 (2017) no. 2, pp. 259-277 | DOI | Zbl

[28] M. Okamoto Norm inflation for the generalized Boussinesq and Kawahara equations, Nonlinear Anal., Theory Methods Appl., Volume 157 (2017), pp. 44-61 | DOI | Zbl

[29] T. Oh; Y. Wang On the ill-posedness of the cubic nonlinear Schrödinger equation on the circle, An. Ştiinţ. Univ. Al. I. Cuza Iaşi, Ser. Nouă, Mat., Volume 64 (2018) no. 1, pp. 53-84 | Zbl

[30] H. Takaoka Well-posedness for the one-dimensional nonlinear Schrödinger equation with the derivative nonlinearity, Adv. Differ. Equ., Volume 4 (1999) no. 4, pp. 561-580 | Zbl

[31] M. Tsutsumi; I. Fukuda On solutions of the derivative nonlinear Schrödinger equation. Existence and uniqueness theorem, Funkc. Ekvacioj, Ser. Int., Volume 23 (1980) no. 3, pp. 259-277 | Zbl

[32] M. Tsutsumi; I. Fukuda On solutions of the derivative nonlinear Schrödinger equation. II, Funkc. Ekvacioj, Ser. Int., Volume 24 (1981) no. 1, pp. 85-94 | Zbl

[33] B. Xia Generic ill-posedness for wave equation of power type on 3D torus, Int. Math. Res. Not., Volume 2021 (2021) no. 20, pp. 15533-15554 | DOI | Zbl

Cité par Sources :

Commentaires - Politique