[Inflation de la norme pour l’équation de Schrödinger non linéaire dérivée]
Dans cette note, nous étudions le caractère mal posé de l’équation de Schrödinger avec perte de dérivée dans la non-linéarité (DNLS) en une dimension d’espace. Plus précisément, en utilisant un développement ternaire-quinaire de la formule de Duhamel, nous prouvons l’inflation de la norme des solutions dans les espaces de Sobolev en dessous de la régularité critique pour l’équation DNLS gaugée. Ce résultat est optimal puisque l’équation DNLS est connue pour être globalement en régularité positive [16]. La principale nouveauté de notre approche est de contrôler la perte de dérivée de la non-linéarité cubique par la non-linéarité quintique avec des données initiales soigneusement choisies.
In this note, we study the ill-posedness problem for the derivative nonlinear Schrödinger equation (DNLS) in the one-dimensional setting. More precisely, by using a ternary-quinary tree expansion of the Duhamel formula we prove norm inflation in Sobolev spaces below the (scaling) critical regularity for the gauged DNLS. This ill-posedness result is sharp since DNLS is known to be globally well-posed in [16]. The main novelty of our approach is to control the derivative loss from the cubic nonlinearity by the quintic nonlinearity with carefully chosen initial data.
Révisé le :
Accepté le :
Publié le :
Yuzhao Wang 1 ; Younes Zine 2, 3
@article{CRMATH_2024__362_G13_1857_0, author = {Yuzhao Wang and Younes Zine}, title = {Norm inflation for the derivative nonlinear {Schr\"odinger} equation}, journal = {Comptes Rendus. Math\'ematique}, pages = {1857--1871}, publisher = {Acad\'emie des sciences, Paris}, volume = {362}, year = {2024}, doi = {10.5802/crmath.566}, language = {en}, }
Yuzhao Wang; Younes Zine. Norm inflation for the derivative nonlinear Schrödinger equation. Comptes Rendus. Mathématique, Volume 362 (2024), pp. 1857-1871. doi : 10.5802/crmath.566. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.566/
[1] Ill-posedness for the derivative Schrödinger and generalized Benjamin–Ono equations, Trans. Am. Math. Soc., Volume 353 (2001) no. 9, pp. 3649-3659 | DOI | Zbl
[2] Invariant measures for the 2D-defocusing nonlinear Schrödinger equation, Commun. Math. Phys., Volume 176 (1996) no. 2, pp. 421-445 | DOI | Zbl
[3] Global well-posedness for the derivative nonlinear Schrödinger equation, Invent. Math., Volume 229 (2022) no. 2, pp. 639-688 | DOI | Zbl
[4] Sharp well-posedness and ill-posedness results for a quadratic non-linear Schrödinger equation, J. Funct. Anal., Volume 233 (2006) no. 1, pp. 228-259 | DOI | Zbl
[5] Asymptotics, frequency modulation, and low regularity ill-posedness for canonical defocusing equations, Am. J. Math., Volume 125 (2003) no. 6, pp. 1235-1293 | DOI | Zbl
[6] Ill-posedness for nonlinear Schrödinger and wave equations (2003) (https://arxiv.org/abs/0311048)
[7] Instability of the Periodic Nonlinear Schrödinger Equation (2003) (https://arxiv.org/abs/math/0311227)
[8] Norm inflation for a non-linear heat equation with Gaussian initial conditions (2023) (https://arxiv.org/abs/2205.14350)
[9] Power series solution of a nonlinear Schrödinger equation, Mathematical aspects of nonlinear dispersive equations (Annals of Mathematics Studies), Volume 163, Princeton University Press, Princeton, 2007, pp. 131-155 | Zbl
[10] Norm-inflation with infinite loss of regularity for periodic NLS equations in negative Sobolev spaces, Bull. Soc. Math. Fr., Volume 145 (2017) no. 4, pp. 623-642 | DOI | Zbl
[11] Norm inflation for the cubic nonlinear heat equation above the scaling critical regularity (2022) (https://arxiv.org/abs/2205.14488)
[12] Ill-posedness of the cubic half-wave equation and other fractional NLS on the real line, Int. Math. Res. Not., Volume 2018 (2018) no. 3, pp. 699-738 | DOI | Zbl
[13] Optimal local well-posedness for the periodic derivative nonlinear Schrödinger equation, Commun. Math. Phys., Volume 384 (2021) no. 2, pp. 1061-1107 | DOI | Zbl
[14] Invariant Gibbs measures and global strong solutions for nonlinear Schrödinger equations in dimension two (2024) (https://arxiv.org/abs/1910.08492)
[15] A remark on norm inflation for nonlinear wave equations, Dyn. Partial Differ. Equ., Volume 17 (2020) no. 4, pp. 361-381 | DOI | Zbl
[16] On the Cauchy problem for the derivative nonlinear Schrödinger equation with periodic boundary condition, Int. Math. Res. Not., Volume 2006 (2006) no. 8, 96763 | DOI | Zbl
[17] Well-posedness results for dispersive equations with derivative nonlinearities, Ph. D. Thesis, Dortmund University, Germany (2006)
[18] Global well-posedness for the derivative nonlinear Schrödinger equation in (2023) (https://arxiv.org/abs/2204.12548)
[19] Large-data equicontinuity for the derivative NLS (2021) (https://arxiv.org/abs/2106.13333)
[20] Ill-posedness for the nonlinear Schrödinger equation with quadratic non-linearity in low dimensions, Trans. Am. Math. Soc., Volume 367 (2015) no. 4, pp. 2613-2630 | DOI | Zbl
[21] A remark on norm inflation for nonlinear Schrödinger equations, Commun. Pure Appl. Anal., Volume 18 (2019) no. 3, pp. 1375-1402 | DOI | Zbl
[22] An exact solution for a derivative nonlinear Schrödinger equation, J. Math. Phys., Volume 19 (1978) no. 4, pp. 798-801 | DOI | Zbl
[23] On the well-posedness problem for the derivative nonlinear Schrödinger equation (2021) (https://arxiv.org/abs/2101.12274v1)
[24] Modified nonlinear Schrödinger equation for Alfvén waves propagating along the magnetic field in cold plasmas, J. Phys. Soc. Japan, Volume 41 (1976) no. 1, pp. 265-271 | DOI | Zbl
[25] Global well-posedness of the derivative nonlinear Schrödinger equation with periodic boundary condition in , J. Differ. Equations, Volume 263 (2017) no. 8, pp. 4658-4722 | DOI | Zbl
[26] Invariant weighted Wiener measures and almost sure global well-posedness for the periodic derivative NLS, J. Eur. Math. Soc., Volume 14 (2012) no. 4, pp. 1275-1330 | DOI | Zbl
[27] A remark on norm inflation with general initial data for the cubic nonlinear Schrödinger equations in negative Sobolev spaces, Funkc. Ekvacioj, Ser. Int., Volume 60 (2017) no. 2, pp. 259-277 | DOI | Zbl
[28] Norm inflation for the generalized Boussinesq and Kawahara equations, Nonlinear Anal., Theory Methods Appl., Volume 157 (2017), pp. 44-61 | DOI | Zbl
[29] On the ill-posedness of the cubic nonlinear Schrödinger equation on the circle, An. Ştiinţ. Univ. Al. I. Cuza Iaşi, Ser. Nouă, Mat., Volume 64 (2018) no. 1, pp. 53-84 | Zbl
[30] Well-posedness for the one-dimensional nonlinear Schrödinger equation with the derivative nonlinearity, Adv. Differ. Equ., Volume 4 (1999) no. 4, pp. 561-580 | Zbl
[31] On solutions of the derivative nonlinear Schrödinger equation. Existence and uniqueness theorem, Funkc. Ekvacioj, Ser. Int., Volume 23 (1980) no. 3, pp. 259-277 | Zbl
[32] On solutions of the derivative nonlinear Schrödinger equation. II, Funkc. Ekvacioj, Ser. Int., Volume 24 (1981) no. 1, pp. 85-94 | Zbl
[33] Generic ill-posedness for wave equation of power type on 3D torus, Int. Math. Res. Not., Volume 2021 (2021) no. 20, pp. 15533-15554 | DOI | Zbl
Cité par Sources :
Commentaires - Politique