Comptes Rendus
Research article - Geometry and Topology, Mechanics
Differential of the Stretch Tensor for Any Dimension with Applications to Quotient Geodesics
Comptes Rendus. Mathématique, Volume 362 (2024), pp. 1847-1856.

The polar decomposition X=WR, with XGL(n,), W𝒮 + (n), and R𝒪 n , suggests a right action of the orthogonal group 𝒪 n on the general linear group GL(n,). Equipped with the Frobenius metric, the 𝒪 n -principal bundle π:XGL(n,)X𝒪 n GL(n,)/𝒪 n becomes a Riemannian submersion. In this note, we derive an expression for the derivative of its unique symmetric section sπ in any dimension, in terms of a solution to a Sylvester equation. We discuss how to solve this type of equation and verify that our formula coincides with those derived in the literature for low dimensions. We apply our result to the characterization of geodesics of the Frobenius metric in the quotient space GL(n,)/𝒪 n .

La décomposition polaire X=WR, avec XGL(n,), W𝒮 + (n) et R𝒪 n , suggère une action à droite du groupe orthogonal 𝒪 n sur le groupe général linéaire GL(n,). Équipé de la métrique de Frobenius, le fibré 𝒪 n -principal π:XGL(n,)X𝒪 n GL(n,)/𝒪 n devient une submersion Riemannienne. Dans cet article, nous obtenons une expression pour la dérivée en toute dimension de son unique section symétrique sπ, en termes d’une solution d’une équation de Sylvester. Nous discutons comment résoudre ce type d’équation et vérifions que notre formule coïncide avec celles dérivées dans la littérature en basses dimensions. Nous appliquons notre résultat à la caractérisation des géodésiques de la métrique de Frobenius dans l’espace quotient GL(n,)/𝒪 n .

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/crmath.692
Classification: 53A17, 53C22, 53C80, 15A24
Keywords: Polar Decomposition, stretch Tensor, quotient Geodesics
Mots-clés : Décomposition polaire, tenseur de déformation, géodésiques quotient

Olivier Bisson 1; Xavier Pennec 1

1 Université Côte d’Azur, INRIA, France
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{CRMATH_2024__362_G12_1847_0,
     author = {Olivier Bisson and Xavier Pennec},
     title = {Differential of the {Stretch} {Tensor} for {Any} {Dimension} with {Applications} to {Quotient} {Geodesics}},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1847--1856},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {362},
     year = {2024},
     doi = {10.5802/crmath.692},
     language = {en},
}
TY  - JOUR
AU  - Olivier Bisson
AU  - Xavier Pennec
TI  - Differential of the Stretch Tensor for Any Dimension with Applications to Quotient Geodesics
JO  - Comptes Rendus. Mathématique
PY  - 2024
SP  - 1847
EP  - 1856
VL  - 362
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.692
LA  - en
ID  - CRMATH_2024__362_G12_1847_0
ER  - 
%0 Journal Article
%A Olivier Bisson
%A Xavier Pennec
%T Differential of the Stretch Tensor for Any Dimension with Applications to Quotient Geodesics
%J Comptes Rendus. Mathématique
%D 2024
%P 1847-1856
%V 362
%I Académie des sciences, Paris
%R 10.5802/crmath.692
%G en
%F CRMATH_2024__362_G12_1847_0
Olivier Bisson; Xavier Pennec. Differential of the Stretch Tensor for Any Dimension with Applications to Quotient Geodesics. Comptes Rendus. Mathématique, Volume 362 (2024), pp. 1847-1856. doi : 10.5802/crmath.692. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.692/

[1] Rajendra Bhatia; Tanvi Jain; Yongdo Lim On the Bures-Wasserstein distance between positive definite matrices, Expo. Math., Volume 37 (2019) no. 2, pp. 165-191 | DOI | MR | Zbl

[2] Rajendra Bhatia; Peter Rosenthal How and why to solve the operator equation AX-XB=Y, Bull. Lond. Math. Soc., Volume 29 (1997) no. 1, pp. 1-21 | DOI | MR | Zbl

[3] Yi-Chao Chen; Lewis Wheeler Derivatives of the stretch and rotation tensors, J. Elasticity, Volume 32 (1993) no. 3, pp. 175-182 | DOI | MR | Zbl

[4] Florian Jeremy Feppon Riemannian geometry of matrix manifolds for Lagrangian uncertainty quantification of stochastic fluid flows, Master thesis, Massachusetts Institute of Technology (2017)

[5] Sylvestre Gallot; Dominique Hulin; Jacques Lafontaine Riemannian geometry, Universitext, Springer, 1990, xiv+284 pages | DOI | MR | Zbl

[6] Evan S. Gawlik; Melvin Leok Iterative computation of the Fréchet derivative of the polar decomposition, SIAM J. Matrix Anal. Appl., Volume 38 (2017) no. 4, pp. 1354-1379 | DOI | MR | Zbl

[7] Zhong Heng Guo Rates of stretch tensors, J. Elasticity, Volume 14 (1984) no. 3, pp. 263-267 | DOI | MR | Zbl

[8] Gene H. Golub; Charles F. Van Loan Matrix Computations, Johns Hopkins University Press, 2013 | DOI | Zbl

[9] Brian Hall Lie groups, Lie algebras, and representations, Graduate Texts in Mathematics, 222, Springer, 2015, xiv+449 pages (An elementary introduction) | DOI | MR | Zbl

[10] Anne Hoger; Donald E. Carlson On the derivative of the square root of a tensor and Guo’s rate theorems, J. Elasticity, Volume 14 (1984) no. 3, pp. 329-336 | DOI | MR | Zbl

[11] Shoshichi Kobayashi; Katsumi Nomizu Foundations of differential geometry. I, Interscience Publishers, 1963, xi+329 pages | MR | Zbl

[12] Estelle Massart; P.-A. Absil Quotient geometry with simple geodesics for the manifold of fixed-rank positive-semidefinite matrices, SIAM J. Matrix Anal. Appl., Volume 41 (2020) no. 1, pp. 171-198 | DOI | MR | Zbl

[13] Martyn P. Nash; Alexander V. Panfilov Electromechanical model of excitable tissue to study reentrant cardiac arrhythmias, Prog. Biophys. Mol. Biol., Volume 85 (2004) no. 2, pp. 501-522 | DOI

[14] Luciano Rosati Derivatives and rates of the stretch and rotation tensors, J. Elasticity, Volume 56 (1999) no. 3, pp. 213-230 | DOI | MR | Zbl

Cited by Sources:

Comments - Policy