Comptes Rendus
Article de recherche - Théorie du contrôle
Bilinear control of evolution equations with unbounded lower order terms. Application to the Fokker–Planck equation
[Contrôle bilinéaire d’équations d’évolution avec opérateur de contrôle non borné. Application à l’équation de Fokker–Planck]
Comptes Rendus. Mathématique, Volume 362 (2024), pp. 511-545.

Nous étudions la contrôlabilité exacte de l’équation d’évolution

u (t)+Au(t)+p(t)Bu(t)=0

où A est un opérateur auto-adjoint non négatif dans l’espace de Hilbert X et B est un opérateur linéaire non borné de X, dominé par la racine carrée de l’opérateur A. L’action du contrôle est bilinéaire et sous forme d’entrée scalaire, ce qui signifie que le contrôle est la fonction scalaire p, supposée ne dépendre que du temps et être de carré intégrable. Notre résultat principal est la contrôlabilité locale exacte de l’équation d’évolution au voisinage de la solution de l’état fondamental, c’est-à-dire au voisinage de la solution de l’équation d’évolution de donnée initiale égale à la première fonction propre de A.

Nous avons traité un problème similaire sous une forme plus générale dans notre article précédent [Contrôlabilité exacte aux solutions propres pour les équations d’évolution de type parabolique via contrôle bilinéaire, Alabau-Boussouira F., Cannarsa P. et Urbani C., Nonlinear Diff. Eq. Appl. (2022)] dans les cas où l’opérateur B est borné. L’extension actuelle aux opérateurs non bornés permet de nombreuses autres applications, comme celle de l’équation de Fokker–Planck en dimension un d’espace. Elle permet également de considérer une classe plus large d’opérateurs de contrôle.

We study the exact controllability of the evolution equation

u (t)+Au(t)+p(t)Bu(t)=0

where A is a nonnegative self-adjoint operator on a Hilbert space X and B is an unbounded linear operator on X, which is dominated by the square root of A. The control action is bilinear and only of scalar-input form, meaning that the control is the scalar function p, which is assumed to depend only on time. Furthermore, we only consider square-integrable controls. Our main result is the local exact controllability of the above equation to the ground state solution, that is, the evolution through time, of the first eigenfunction of A, as initial data.

The analogous problem (in a more general form) was addressed in our previous paper [Exact controllability to eigensolutions for evolution equations of parabolic type via bilinear control, Alabau-Boussouira F., Cannarsa P. and Urbani C., Nonlinear Diff. Eq. Appl. (2022)] for a bounded operator B. The current extension to unbounded operators allows for many more applications, including the Fokker–Planck equation in one space dimension, and a larger class of control actions.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.567
Classification : 35Q93, 93C25, 93C10, 93B05, 35K90

Fatiha Alabau-Boussouira 1 ; Piermarco Cannarsa 2 ; Cristina Urbani 3

1 Laboratoire Jacques-Louis Lions, Sorbonne Université, 75005, Paris, Université de Lorraine, France
2 Dipartimento di Matematica, Università di Roma Tor Vergata, 00133, Roma, Italy
3 Dipartimento di Scienze Tecnologiche e dell’Innovazione, Universitas Mercatorum, Piazza Mattei 10, 00186, Roma, Italy
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2024__362_G5_511_0,
     author = {Fatiha Alabau-Boussouira and Piermarco Cannarsa and Cristina Urbani},
     title = {Bilinear control of evolution equations with unbounded lower order terms. {Application} to the {Fokker{\textendash}Planck} equation},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {511--545},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {362},
     year = {2024},
     doi = {10.5802/crmath.567},
     language = {en},
}
TY  - JOUR
AU  - Fatiha Alabau-Boussouira
AU  - Piermarco Cannarsa
AU  - Cristina Urbani
TI  - Bilinear control of evolution equations with unbounded lower order terms. Application to the Fokker–Planck equation
JO  - Comptes Rendus. Mathématique
PY  - 2024
SP  - 511
EP  - 545
VL  - 362
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.567
LA  - en
ID  - CRMATH_2024__362_G5_511_0
ER  - 
%0 Journal Article
%A Fatiha Alabau-Boussouira
%A Piermarco Cannarsa
%A Cristina Urbani
%T Bilinear control of evolution equations with unbounded lower order terms. Application to the Fokker–Planck equation
%J Comptes Rendus. Mathématique
%D 2024
%P 511-545
%V 362
%I Académie des sciences, Paris
%R 10.5802/crmath.567
%G en
%F CRMATH_2024__362_G5_511_0
Fatiha Alabau-Boussouira; Piermarco Cannarsa; Cristina Urbani. Bilinear control of evolution equations with unbounded lower order terms. Application to the Fokker–Planck equation. Comptes Rendus. Mathématique, Volume 362 (2024), pp. 511-545. doi : 10.5802/crmath.567. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.567/

[1] F. Alabau-Boussouira; P. Cannarsa; G. Fragnelli Carleman estimates for degenerate parabolic operators with applications to null controllability, J. Evol. Equ., Volume 6 (2006) no. 2, pp. 161-204 | DOI | MR | Zbl

[2] F. Alabau-Boussouira; P. Cannarsa; G. Leugering Control and stabilization of degenerate wave equations, SIAM J. Control Optim., Volume 55 (2017) no. 3, pp. 2052-2087 | DOI | MR | Zbl

[3] F. Alabau-Boussouira; P. Cannarsa; C. Urbani Superexponential stabilizability of evolution equations of parabolic type via bilinear control, J. Evol. Equ., Volume 21 (2021) no. 1, pp. 941-967 | DOI | MR | Zbl

[4] F. Alabau-Boussouira; P. Cannarsa; C. Urbani Exact controllability to eigensolutions for evolution equations of parabolic type via bilinear control, NoDEA, Nonlinear Differ. Equ. Appl., Volume 29 (2022) no. 4, 38 | DOI | MR | Zbl

[5] F. Alabau-Boussouira; C. Urbani A constructive mathematical algorithm for building mixing coupling real valued potentials with time control. Applications to exact controllability and stabilization in bilinear control, 2020 (work in progress, Chapter 5 of Urbani C. PhD Thesis, http://hdl.handle.net/20.500.12571/10061)

[6] P. Baldi Stochastic calculus, Universitext, Springer (2017), pp. 215-254 | DOI

[7] A. Bensoussan; G. Da Prato; M. C. Delfour; S. K. Mitter Representation and control of infinite dimensional systems. Volume 1, Systems & Control: Foundations & Applications, Birkhäuser, 1992 | DOI | Zbl

[8] K. Beauchard Local controllability of a 1-D Schrödinger equation, J. Math. Pures Appl., Volume 84 (2005) no. 7, pp. 851-956 | DOI | Zbl

[9] K. Beauchard Local controllability and non-controllability for a 1D wave equation with bilinear control, J. Differ. Equations, Volume 250 (2011) no. 4, pp. 2064-2098 | DOI | MR | Zbl

[10] K. Beauchard; C. Laurent Local controllability of 1D linear and nonlinear Schrödinger equations with bilinear control, J. Math. Pures Appl., Volume 94 (2010) no. 5, pp. 520-554 | DOI | Zbl

[11] J. M. Ball; J. E. Marsden; M. Slemrod Controllability for distributed bilinear systems, SIAM J. Control Optim., Volume 20 (1982) no. 4, pp. 575-597 | DOI | MR | Zbl

[12] M. Campiti; G. Metafune; D. Pallara Degenerate self-adjoint evolution equations on the unit interval, Semigroup Forum, Volume 57 (1998) no. 1, pp. 1-36 | DOI | MR | Zbl

[13] P. Cannarsa; P. Martinez; C. Urbani Bilinear control of a degenerate hyperbolic equation, SIAM J. Math. Anal., Volume 55 (2023) no. 6, pp. 6517-6553 | DOI | MR | Zbl

[14] P. Cannarsa; P. Martinez; J. Vancostenoble Carleman estimate for a class of degenerate parabolic operators, SIAM J. Control Optim., Volume 47 (2008) no. 1, pp. 1-19 | DOI | MR | Zbl

[15] P. Cannarsa; P. Martinez; J. Vancostenoble The cost of controlling weakly degenerate parabolic equations by boundary controls, Math. Control Relat. Fields, Volume 7 (2017) no. 2, pp. 171-211 | DOI | MR | Zbl

[16] J.-M. Coron Control and Nonlinearity, Mathematical Surveys and Monographs, 136, American Mathematical Society, 2007 | DOI | Zbl

[17] P. Cannarsa; C. Urbani Superexponential stabilizability of degenerate parabolic equations via bilinear control, Inverse Problems and Related Topics, Springer (2020), pp. 31-45 | DOI | Zbl

[18] M. Gueye Exact boundary controllability of 1-D parabolic and hyperbolic degenerate equations, SIAM J. Control Optim., Volume 52 (2014) no. 4, pp. 2037-2054 | DOI | MR | Zbl

[19] V. Komornik; P. Loreti Fourier series in control theory, Springer, 2005 | DOI | Zbl

[20] J.-L. Lions; E. Magenes Problèmes aux limites non homogènes et applications, vol. 1, Dunod, 1968 | Zbl

[21] A. Pazy Semigroups of linear operators and applications to partial differential equations, Applied Mathematical Sciences, 44, Springer, 2012 | DOI | Zbl

[22] H. Triebel Interpolation Theory, Function Spaces and Differential Operators, North-Holland, 1978 | Zbl

Cité par Sources :

Commentaires - Politique