Comptes Rendus
Partial Differential Equations/Optimal Control
A general method for proving sharp energy decay rates for memory-dissipative evolution equations
[Une méthode générale pour obtenir des taux de décroissance de l'énergie des équations d'évolution avec dissipation-mémoire]
Comptes Rendus. Mathématique, Volume 347 (2009) no. 15-16, pp. 867-872.

On étudie le problème de la stabilisation des équations de type hyperbolique par un feedback-mémoire distribué. L'objet de cette Note est de montrer qu'il existe une méthode constructive générale qui permet d'obtenir un taux de décroissance de l'énergie en fonction du comportement au voisinage de l'infini du noyau. Cette méthode permet de retrouver de manière naturelle les résultats connus (cas exponentiel, polynômial, …) mais aussi de définir une classe très générale et quasi-optimale de noyaux à laquelle elle s'applique. Elle permet de montrer sous une condition, aussi très générale, que l'énergie des solutions décroit au moins aussi vite que le noyau à l'infini.

This Note is concerned with stabilization of hyperbolic systems by a distributed memory feedback. We present here a general method which gives energy decay rates in terms of the asymptotic behavior of the kernel at infinity. This method, which allows us to recover in a natural way the known cases (exponential, polynomial, …), applies to a large quasi-optimal class of kernels. It also provides sharp energy decay rates compared to the ones that are available in the literature. We give a general condition under which the energy of solutions is shown to decay at least as fast as the kernel at infinity.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2009.05.011

Fatiha Alabau-Boussouira 1 ; Piermarco Cannarsa 2

1 L.M.A.M. CNRS-UMR 7122 et INRIA Équipe-projet CORIDA, université Paul-Verlaine-Metz, Ile du Saulcy, 57045 Metz cedex 01, France
2 Dipartimento di Matematica, Università di Roma Tor Vergata, 00133 Roma, Italy
@article{CRMATH_2009__347_15-16_867_0,
     author = {Fatiha Alabau-Boussouira and Piermarco Cannarsa},
     title = {A general method for proving sharp energy decay rates for memory-dissipative evolution equations},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {867--872},
     publisher = {Elsevier},
     volume = {347},
     number = {15-16},
     year = {2009},
     doi = {10.1016/j.crma.2009.05.011},
     language = {en},
}
TY  - JOUR
AU  - Fatiha Alabau-Boussouira
AU  - Piermarco Cannarsa
TI  - A general method for proving sharp energy decay rates for memory-dissipative evolution equations
JO  - Comptes Rendus. Mathématique
PY  - 2009
SP  - 867
EP  - 872
VL  - 347
IS  - 15-16
PB  - Elsevier
DO  - 10.1016/j.crma.2009.05.011
LA  - en
ID  - CRMATH_2009__347_15-16_867_0
ER  - 
%0 Journal Article
%A Fatiha Alabau-Boussouira
%A Piermarco Cannarsa
%T A general method for proving sharp energy decay rates for memory-dissipative evolution equations
%J Comptes Rendus. Mathématique
%D 2009
%P 867-872
%V 347
%N 15-16
%I Elsevier
%R 10.1016/j.crma.2009.05.011
%G en
%F CRMATH_2009__347_15-16_867_0
Fatiha Alabau-Boussouira; Piermarco Cannarsa. A general method for proving sharp energy decay rates for memory-dissipative evolution equations. Comptes Rendus. Mathématique, Volume 347 (2009) no. 15-16, pp. 867-872. doi : 10.1016/j.crma.2009.05.011. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2009.05.011/

[1] F. Alabau-Boussouira Une formule générale pour le taux de décroissance des systèmes dissipatifs non linéaires, C. R. Acad. Sci. Paris, Ser. I, Volume 338 (2004), pp. 35-40

[2] F. Alabau-Boussouira Convexity and weighted integral inequalities for energy decay rates of nonlinear dissipative hyperbolic systems, Appl. Math. Optim., Volume 51 (2005) no. 1, pp. 61-105

[3] F. Alabau-Boussouira Asymptotic stability of wave equations with memory and frictional boundary dampings, Applicationes Mathematicae, Volume 35 (2008), pp. 247-258

[4] F. Alabau-Boussouira, A unified approach via convexity for optimal energy decay rates of finite and infinite dimensional vibrating damped systems with applications to semi-discretized vibrating damped systems, submitted for publication

[5] F. Alabau-Boussouira, P. Cannarsa, General decay estimates for memory-damped evolution equations, in preparation

[6] F. Alabau-Boussouira; P. Cannarsa; D. Sforza Decay estimates for second order evolution equations with memory, J. Funct. Anal., Volume 254 (2008), pp. 1342-1372

[7] F. Alabau-Boussouira; J. Prüss; R. Zacher Exponential and polynomial stability of a wave equation for boundary memory damping with singular kernels, C. R. Acad. Sci. Paris, Ser. I, Volume 347 (2009), pp. 277-282

[8] F. Ammar-Khodja; A. Benabdallah; J.E. Munoz-Rivera; R. Racke Energy decay for Timoshenko systems of memory type, J. Differential Equations, Volume 194 (2003) no. 1, pp. 82-115

[9] C. Bardos; G. Lebeau; J. Rauch Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary, SIAM J. Control Optim., Volume 30 (1992), pp. 1024-1065

[10] P. Cannarsa; D. Sforza A stability result for a class of nonlinear integrodifferential equations with L1 kernels, Applicationes Mathematicae, Volume 35 (2008) no. 4, pp. 395-430

[11] M.M. Cavalcanti; H.P. Oquendo Frictional versus viscoelastic damping in a semilinear wave equation, SIAM J. Control Optim., Volume 42 (2003), pp. 1310-1324

[12] M.M. Cavalcanti; V.N. Domingos Cavalcanti; P. Martinez General decay rate estimates for viscoelastic dissipative systems, Nonlinear Anal., Volume 68 (2008), pp. 177-193

[13] C.M. Dafermos, Asymptotic behavior of solutions of evolution equations, Nonlinear evolution equations, Publ. Math. Res. Center Univ. Wisconsin 40, Academic Press, New York, 1978, pp. 103–123

[14] V. Komornik Exact Controllability and Stabilization, The Multiplier Method, Collection RMA, vol. 36, Masson–John Wiley, Paris–Chichester, 1994

[15] I. Lasiecka; D. Tataru Uniform boundary stabilization of semilinear wave equation with nonlinear boundary damping, Differential Integral Equations, Volume 8 (1993), pp. 507-533

[16] G. Lebeau; E. Zuazua Decay rates for the three-dimensional linear system of thermoelasticity, Arch. Ration. Mech. Anal., Volume 148 (1999), pp. 179-231

[17] J.E. Muñoz Rivera; A. Peres Salvatierra Asymptotic behavior of the energy in partially viscoelastic materials, Quart. Appl. Math., Volume 59 (2001), pp. 557-578

[18] J. Prüss Evolutionary Integral Equations and Applications, Monographs in Mathematics, vol. 87, Birkhäuser Verlag, Basel, 1993

[19] E. Zuazua Exponential decay for the semilinear wave equation with locally distributed damping, Comm. Partial Differential Equations, Volume 15 (1990), pp. 205-235

  • Adel M. Al-Mahdi; Maher Noor; Mohammed M. Al-Gharabli; Baowei Feng; Abdelaziz Soufyane Stability analysis for a Rao-Nakra sandwich beam equation with time-varying weights and frictional dampings, AIMS Mathematics, Volume 9 (2024) no. 5, p. 12570 | DOI:10.3934/math.2024615
  • Quan Zhou; Yang Liu; Dong Yang Global attractors for a class of viscoelastic plate equations with past history, AIMS Mathematics, Volume 9 (2024) no. 9, p. 24887 | DOI:10.3934/math.20241212
  • Josiane Faria Existence and exponential stability for the wave equation with nonlinear interior source and localized viscoelastic boundary feedback, Electronic Journal of Qualitative Theory of Differential Equations (2024) no. 47, p. 1 | DOI:10.14232/ejqtde.2024.1.47
  • Jian-Hua Chen; Hua-Cheng Zhou; Zhong-Jie Han Admissible Observation Operators of Abstract Linear Viscoelastic Systems, IEEE Transactions on Automatic Control, Volume 69 (2024) no. 12, p. 8449 | DOI:10.1109/tac.2024.3408050
  • Türker Özsarı; İdem Susuzlu Stabilisation of linear waves with inhomogeneous Neumann boundary conditions, International Journal of Control (2024), p. 1 | DOI:10.1080/00207179.2024.2417440
  • Amirouche Berkani; Soumia Hamdi; Hamou Ait Abbas Vibration control of a flexible satellite system with viscoelastic damping, International Journal of Control, Volume 97 (2024) no. 4, p. 673 | DOI:10.1080/00207179.2023.2165163
  • Mohammad M. Al-Gharabli Stability Results for a System of Nonlinear Viscoelastic Plate Equations with Nonlinear Frictional Damping and Logarithmic Source Terms, Journal of Dynamical and Control Systems, Volume 30 (2024) no. 1 | DOI:10.1007/s10883-023-09676-8
  • D. A. Zakora Asymptotic Behavior of Solutions of a Complete Second-Order Integro-Differential Equation, Journal of Mathematical Sciences, Volume 282 (2024) no. 3, p. 362 | DOI:10.1007/s10958-024-07182-1
  • Jianghao Hao; Jing Yang New general decay results for a fully dynamic piezoelectric beam system with fractional delays under memory boundary controls, Mathematical Methods in the Applied Sciences, Volume 47 (2024) no. 1, p. 229 | DOI:10.1002/mma.9653
  • Baowei Feng; Zayd Hajjej; Mohamed Balegh Existence and general decay rate estimates of a coupled Lamé system only with viscoelastic dampings, Mathematical Methods in the Applied Sciences, Volume 47 (2024) no. 13, p. 10828 | DOI:10.1002/mma.6586
  • Hocine Makheloufi; Mounir Bahlil Global well-posedness and stability results for an abstract viscoelastic equation with a non-constant delay term and nonlinear weight, Ricerche di Matematica, Volume 73 (2024) no. 1, p. 433 | DOI:10.1007/s11587-021-00617-w
  • Jian-Hua Chen; Wen-Ying Lu A new approach to abstract linear viscoelastic equation in Hilbert space, Zeitschrift für angewandte Mathematik und Physik, Volume 75 (2024) no. 1 | DOI:10.1007/s00033-023-02159-7
  • Le Cong Nhan; Y. Van Nguyen; Le Xuan Truong Optimal decay rate and blow-up of solution for a classical thermoelastic system with viscoelastic damping and nonlinear sources, Zeitschrift für angewandte Mathematik und Physik, Volume 75 (2024) no. 5 | DOI:10.1007/s00033-024-02310-y
  • Zayd Hajjej; Sun-Hye Park Asymptotic stability of a quasi-linear viscoelastic Kirchhoff plate equation with logarithmic source and time delay, AIMS Mathematics, Volume 8 (2023) no. 10, p. 24087 | DOI:10.3934/math.20231228
  • Jum-Ran Kang General decay of solutions for a von Karman plate system with general type of relaxation functions on the boundary, AIMS Mathematics, Volume 9 (2023) no. 1, p. 2308 | DOI:10.3934/math.2024114
  • Muhammad I. Mustafa Viscoelasticity versus nonlinear feedback in plate systems: optimal decay, Applicable Analysis, Volume 102 (2023) no. 15, p. 4140 | DOI:10.1080/00036811.2022.2107906
  • Abdelkarim Kelleche; Baowei Feng On general decay for a nonlinear viscoelastic equation, Applicable Analysis, Volume 102 (2023) no. 6, p. 1582 | DOI:10.1080/00036811.2021.1992394
  • Min Yoon; Mi Jin Lee; Jum-Ran Kang General decay result for the wave equation with memory and acoustic boundary conditions, Applied Mathematics Letters, Volume 135 (2023), p. 108385 | DOI:10.1016/j.aml.2022.108385
  • Mohamed Balegh; Boumediène Chentouf; Baowei Feng; Zayd Hajjej A general stability result for a von Karman system with memory and nonlinear boundary delay term, Applied Mathematics Letters, Volume 138 (2023), p. 108512 | DOI:10.1016/j.aml.2022.108512
  • Baowei Feng; Salim Messaoudi; Abdelaziz Soufyane; Mostafa Zahri Optimal memory-type boundary control of the Bresse system, Asymptotic Analysis, Volume 132 (2023) no. 1-2, p. 29 | DOI:10.3233/asy-221784
  • Haiyan Li Uniform stability of a strong time-delayed viscoelastic system with Balakrishnan–Taylor damping, Boundary Value Problems, Volume 2023 (2023) no. 1 | DOI:10.1186/s13661-023-01749-8
  • Muhammad I. Mustafa Optimal energy decay rates for viscoelastic wave equations with nonlinearity of variable exponent, Electronic Journal of Differential Equations, Volume 2023 (2023) no. 01-??, p. 53 | DOI:10.58997/ejde.2023.53
  • Mohamed Alahyane; Mohammad M. Al-Gharabli; Adel M. Al-Mahdi Theoretical and computational decay results for a Bresse system with one infinite memory in the longitudinal displacement, Evolution Equations and Control Theory, Volume 12 (2023) no. 1, p. 191 | DOI:10.3934/eect.2022027
  • V. N. Domingos Cavalcanti; M. M. Cavalcanti; T. D. Marchiori; C. M. Webler Asymptotic Behaviour of the Eenergy to the Viscoelastic Wave Equation with Localized Hereditary Memory and Supercritical Source Term, Journal of Dynamics and Differential Equations, Volume 35 (2023) no. 4, p. 3381 | DOI:10.1007/s10884-022-10142-5
  • Yang Liu; Byungsoo Moon; Vicenţiu D. Rădulescu; Runzhang Xu; Chao Yang Qualitative properties of solution to a viscoelastic Kirchhoff-like plate equation, Journal of Mathematical Physics, Volume 64 (2023) no. 5 | DOI:10.1063/5.0149240
  • Adel M. Al-Mahdi; Mohammad M. Al-Gharabli; Mostafa Zahri Theoretical and computational decay results for a memory type wave equation with variable-exponent nonlinearity, Mathematical Control and Related Fields, Volume 13 (2023) no. 2, p. 605 | DOI:10.3934/mcrf.2022010
  • Baowei Feng; Sun‐Hye Park A general decay criterion for a viscoelastic equation with nonlinear distributed delay and damping effects, Mathematical Methods in the Applied Sciences, Volume 46 (2023) no. 17, p. 17910 | DOI:10.1002/mma.9537
  • Mengxian Lv; Jianghao Hao Stability of viscoelastic wave equation with distributed delay and logarithmic nonlinearity, Mathematical Methods in the Applied Sciences, Volume 46 (2023) no. 4, p. 4728 | DOI:10.1002/mma.8797
  • Mi Jin Lee; Jum-Ran Kang General Stability for the Viscoelastic Wave Equation with Nonlinear Time-Varying Delay, Nonlinear Damping and Acoustic Boundary Conditions, Mathematics, Volume 11 (2023) no. 22, p. 4593 | DOI:10.3390/math11224593
  • Baowei Feng; Ahmet Özkan Özer Stability results for piezoelectric beams with long‐range memory effects in the boundary, Mathematische Nachrichten, Volume 296 (2023) no. 9, p. 4206 | DOI:10.1002/mana.202100583
  • Ammar Khemmoudj General decay of the solution to a nonlinear viscoelastic beam with delay, Partial Differential Equations and Applications, Volume 4 (2023) no. 3 | DOI:10.1007/s42985-023-00238-y
  • Amina Chaili; Bochra Belhadji; Abderrahmane Beniani Decay rate of solutions to the Cauchy problem for a coupled system of viscoelastic wave equations with a strong delay in Rⁿ, Studia Universitatis Babes-Bolyai Matematica, Volume 68 (2023) no. 4, p. 895 | DOI:10.24193/subbmath.2023.4.16
  • Zayd Hajjej Existence and General Decay of Solutions for a Weakly Coupled System of Viscoelastic Kirchhoff Plate and Wave Equations, Symmetry, Volume 15 (2023) no. 10, p. 1917 | DOI:10.3390/sym15101917
  • J. G. Simion Antunes; M. M. Cavalcanti; V. N. Domingos Cavalcanti; A. Vicente Exponential Stability for the 2D Wave Model with Localized Memory in a Past History Framework and Nonlinearity of Arbitrary Growth, The Journal of Geometric Analysis, Volume 33 (2023) no. 2 | DOI:10.1007/s12220-022-01085-w
  • Zhiqing Liu; Zhong Bo Fang Optimal decay for a wave transmission problem with fading memory, Applicable Analysis, Volume 101 (2022) no. 6, p. 1984 | DOI:10.1080/00036811.2020.1798413
  • Kun-Peng Jin Stability for Locally Coupled Wave-Type Systems with Indirect Mixed-Type Dampings, Applied Mathematics Optimization, Volume 85 (2022) no. 1 | DOI:10.1007/s00245-022-09830-x
  • Houria Chellaoua; Yamna Boukhatem; Baowei Feng Optimal decay of an abstract nonlinear viscoelastic equation in Hilbert spaces with delay term in the nonlinear internal damping, Asymptotic Analysis, Volume 126 (2022) no. 1-2, p. 65 | DOI:10.3233/asy-201664
  • Houria Chellaoua; Yamna Boukhatem General decay for second-order abstract viscoelastic equation in Hilbert spaces with time delay, Boletim da Sociedade Paranaense de Matemática, Volume 41 (2022), p. 1 | DOI:10.5269/bspm.52175
  • D. A. Zakora Asymptotic Behavior of Solutions of a Complete Second-Order Integro-Differential Equation, Contemporary Mathematics. Fundamental Directions, Volume 68 (2022) no. 3, p. 451 | DOI:10.22363/2413-3639-2022-68-3-451-466
  • Mohammad Al-Gharabli; Mohamed Balegh; Baowei Feng; Zayd Hajjej; Salim A. Messaoudi Existence and general decay of Balakrishnan-Taylor viscoelastic equation with nonlinear frictional damping and logarithmic source term, Evolution Equations and Control Theory, Volume 11 (2022) no. 4, p. 1149 | DOI:10.3934/eect.2021038
  • D. A. Zakora Representation of Solutions of a Certain Integro-Differential Equation and Applications, Journal of Mathematical Sciences, Volume 263 (2022) no. 5, p. 675 | DOI:10.1007/s10958-022-05958-x
  • Adel M. Al-Mahdi; Mohammad M. Al-Gharabli; Mohammad Kafini; Shadi Al-Omari; M. M. Bhatti A Stability Result for a Viscoelastic Wave Equation in the Presence of Finite and Infinite Memories, Journal of Mathematics, Volume 2022 (2022) no. 1 | DOI:10.1155/2022/2697155
  • Alessandro Paolucci Exponential decay for nonlinear abstract evolution equations with a countably infinite number of time‐dependent time delays, Mathematical Methods in the Applied Sciences, Volume 45 (2022) no. 4, p. 2413 | DOI:10.1002/mma.7936
  • Kun‐Peng Jin Indirect stabilization of coupled abstract evolution equations with memory: Different propagation speeds, Mathematical Methods in the Applied Sciences, Volume 45 (2022) no. 8, p. 4451 | DOI:10.1002/mma.8048
  • Mohammad M. Al-Gharabli; Adel M. Almahdi; Maher Noor; Johnson D. Audu Numerical and Theoretical Stability Study of a Viscoelastic Plate Equation with Nonlinear Frictional Damping Term and a Logarithmic Source Term, Mathematical and Computational Applications, Volume 27 (2022) no. 1, p. 10 | DOI:10.3390/mca27010010
  • Adel M. Al-Mahdi; Mohammad M. Al-Gharabli; Mohamed Alahyane Theoretical and Computational Results of a Memory-Type Swelling Porous-Elastic System, Mathematical and Computational Applications, Volume 27 (2022) no. 2, p. 27 | DOI:10.3390/mca27020027
  • Eduardo H. Gomes Tavares; Marcio A. Jorge Silva; To Fu Ma Unified stability analysis for a Volterra integro-differential equation under creation time perspective, Zeitschrift für angewandte Mathematik und Physik, Volume 73 (2022) no. 3 | DOI:10.1007/s00033-022-01756-2
  • Jum-Ran Kang General decay rates for a von Kármán plate model with memory, Zeitschrift für angewandte Mathematik und Physik, Volume 73 (2022) no. 6 | DOI:10.1007/s00033-022-01880-z
  • Mohammad M. Al-Gharabli; Adel M. Al-Mahdi; Mohammad Kafini Global existence and new decay results of a viscoelastic wave equation with variable exponent and logarithmic nonlinearities, AIMS Mathematics, Volume 6 (2021) no. 9, p. 10105 | DOI:10.3934/math.2021587
  • Muhammad I. Mustafa The control of Timoshenko beams by memory-type boundary conditions, Applicable Analysis, Volume 100 (2021) no. 2, p. 290 | DOI:10.1080/00036811.2019.1602724
  • Fushan Li; Wenmin Zhu Optimized Uniform Decay Estimate of the Solution to Petrovsky Equation with Memory, Applied Mathematics Optimization, Volume 84 (2021) no. 1, p. 711 | DOI:10.1007/s00245-020-09659-2
  • Yuzhen Bai; Xiaomin Xue; Fushan Li Generalized Conditions and Improved Method on Asymptotic Stability for a Wave Equation with Variable Density, Applied Mathematics Optimization, Volume 84 (2021) no. S1, p. 437 | DOI:10.1007/s00245-021-09775-7
  • Keltoum Bouhali; Fateh Ellaggoune Existence and decay of solution to coupled system of viscoelastic wave equations with strong damping in Rn, Boletim da Sociedade Paranaense de Matemática, Volume 39 (2021) no. 6, p. 31 | DOI:10.5269/bspm.41175
  • Chan Li; Jin Liang; Ti-Jun Xiao Long-term dynamical behavior of the wave model with locally distributed frictional and viscoelastic damping, Communications in Nonlinear Science and Numerical Simulation, Volume 92 (2021), p. 105472 | DOI:10.1016/j.cnsns.2020.105472
  • Abdelaziz Limam; Yamna Boukhatem; Benyattou Benabderrahmane New general stability for a variable coefficient thermo-viscoelastic-coupled system of second sound with acoustic boundary conditions, Computational and Applied Mathematics, Volume 40 (2021) no. 3 | DOI:10.1007/s40314-021-01459-w
  • Houria Chellaoua; Yamna Boukhatem Optimal decay for second‐order abstract viscoelastic equation in Hilbert spaces with infinite memory and time delay, Mathematical Methods in the Applied Sciences, Volume 44 (2021) no. 2, p. 2071 | DOI:10.1002/mma.6917
  • Sheng Fan; Sundarapandian Vaidyanathan A New General Decay Rate of Wave Equation with Memory-Type Boundary Control, Mathematical Problems in Engineering, Volume 2021 (2021), p. 1 | DOI:10.1155/2021/5571072
  • Alessandro Paolucci; Cristina Pignotti Exponential decay for semilinear wave equations with viscoelastic damping and delay feedback, Mathematics of Control, Signals, and Systems, Volume 33 (2021) no. 4, p. 617 | DOI:10.1007/s00498-021-00292-0
  • Muhammad I. Mustafa On the Control of Dissipative Viscoelastic Timoshenko Beams, Mediterranean Journal of Mathematics, Volume 18 (2021) no. 2 | DOI:10.1007/s00009-020-01680-7
  • Houria Chellaoua; Yamna Boukhatem Stability results for second-order abstract viscoelastic equation in Hilbert spaces with time-varying delay, Zeitschrift für angewandte Mathematik und Physik, Volume 72 (2021) no. 2 | DOI:10.1007/s00033-021-01477-y
  • Muhammad I. Mustafa Optimal energy decay result for nonlinear abstract viscoelastic dissipative systems, Zeitschrift für angewandte Mathematik und Physik, Volume 72 (2021) no. 2 | DOI:10.1007/s00033-021-01498-7
  • Abdelaziz Limam; Yamna Boukhatem; Benyattou Benabderrahmane General Decay Result for a Type III Thermoelastic Coupled System with Acoustic Boundary Conditions in the Presence of Distributed Delay, Zurnal matematiceskoj fiziki, analiza, geometrii, Volume 17 (2021) no. 2, p. 175 | DOI:10.15407/mag17.02.175
  • Salah Boulaaras Polynomial decay rate for a new class of viscoelastic Kirchhoff equation related with Balakrishnan-Taylor dissipation and logarithmic source terms, Alexandria Engineering Journal, Volume 59 (2020) no. 3, p. 1059 | DOI:10.1016/j.aej.2019.12.013
  • Adel M. Al-Mahdi Stability result of a viscoelastic plate equation with past history and a logarithmic nonlinearity, Boundary Value Problems, Volume 2020 (2020) no. 1 | DOI:10.1186/s13661-020-01382-9
  • Baowei Feng; Mostafa Zahri Optimal Decay Rate Estimates of a Nonlinear Viscoelastic Kirchhoff Plate, Complexity, Volume 2020 (2020), p. 1 | DOI:10.1155/2020/6079507
  • Yang Liu Long-time behavior of a class of viscoelastic plate equations, Electronic Research Archive, Volume 28 (2020) no. 1, p. 311 | DOI:10.3934/era.2020018
  • M.M. Cavalcanti; V.N. Domingos Cavalcanti; V.H. Gonzalez Martinez; V.A. Peralta; A. Vicente Stability for semilinear hyperbolic coupled system with frictional and viscoelastic localized damping, Journal of Differential Equations, Volume 269 (2020) no. 10, p. 8212 | DOI:10.1016/j.jde.2020.06.013
  • Farida Belhannache; Mohammad M. Algharabli; Salim A. Messaoudi Asymptotic Stability for a Viscoelastic Equation with Nonlinear Damping and Very General Type of Relaxation Functions, Journal of Dynamical and Control Systems, Volume 26 (2020) no. 1, p. 45 | DOI:10.1007/s10883-019-9429-z
  • Baowei Feng; Haiyan Li DECAY RATES FOR A COUPLED VISCOELASTIC LAMÉ SYSTEM WITH STRONG DAMPING, Mathematical Modelling and Analysis, Volume 25 (2020) no. 2, p. 226 | DOI:10.3846/mma.2020.10383
  • Khaled Zennir; Mohamad Biomy General Decay Rate of Solution for Love-Equation with Past History and Absorption, Mathematics, Volume 8 (2020) no. 9, p. 1632 | DOI:10.3390/math8091632
  • Baowei Feng; Abdelaziz Soufyane Memory-type boundary control of a laminated Timoshenko beam, Mathematics and Mechanics of Solids, Volume 25 (2020) no. 8, p. 1568 | DOI:10.1177/1081286520911078
  • J.C.O. Faria; M.A. Jorge Silva; A.Y. Souza Franco A general stability result for the semilinear viscoelastic wave model under localized effects, Nonlinear Analysis: Real World Applications, Volume 56 (2020), p. 103158 | DOI:10.1016/j.nonrwa.2020.103158
  • Mohammed Aili; Ammar Khemmoudj General decay of energy for a viscoelastic wave equation with a distributed delay term in the nonlinear internal dambing, Rendiconti del Circolo Matematico di Palermo Series 2, Volume 69 (2020) no. 3, p. 861 | DOI:10.1007/s12215-019-00443-y
  • Monica Conti; Vittorino Pata General decay properties of abstract linear viscoelasticity, Zeitschrift für angewandte Mathematik und Physik, Volume 71 (2020) no. 1 | DOI:10.1007/s00033-019-1229-5
  • Mohammad M. Al-Gharabli New general decay results for a viscoelastic plate equation with a logarithmic nonlinearity, Boundary Value Problems, Volume 2019 (2019) no. 1 | DOI:10.1186/s13661-019-01308-0
  • Salim A. Messaoudi; Jamilu Hashim Hassan On the General Decay for a System of Viscoelastic Wave Equations, Current Trends in Mathematical Analysis and Its Interdisciplinary Applications (2019), p. 287 | DOI:10.1007/978-3-030-15242-0_10
  • Muhammad I. Mustafa; Mohammad Kafini Decay rates for a coupled quasilinear system of nonlinear viscoelastic equations, Journal of Applied Analysis, Volume 25 (2019) no. 1, p. 97 | DOI:10.1515/jaa-2019-0011
  • Muhammad I. Mustafa Asymptotic Stability for the Second Order Evolution Equation with Memory, Journal of Dynamical and Control Systems, Volume 25 (2019) no. 2, p. 263 | DOI:10.1007/s10883-018-9410-2
  • Mohammad M. Al-Gharabli; Adel M. Al-Mahdi; Salim A. Messaoudi General and Optimal Decay Result for a Viscoelastic Problem with Nonlinear Boundary Feedback, Journal of Dynamical and Control Systems, Volume 25 (2019) no. 4, p. 551 | DOI:10.1007/s10883-018-9422-y
  • Muhammad I. Mustafa Energy Decay in a Quasilinear System with Finite and Infinite Memories, Mathematical Methods in Engineering, Volume 23 (2019), p. 235 | DOI:10.1007/978-3-319-91065-9_12
  • Salah Boulaaras; Alaeddin Draifia; Khaled Zennir General decay of nonlinear viscoelastic Kirchhoff equation with Balakrishnan‐Taylor damping and logarithmic nonlinearity, Mathematical Methods in the Applied Sciences, Volume 42 (2019) no. 14, p. 4795 | DOI:10.1002/mma.5693
  • Salah Boulaaras; Alaeddin Draifia; Mohammad Alnegga Polynomial Decay Rate for Kirchhoff Type in Viscoelasticity with Logarithmic Nonlinearity and Not Necessarily Decreasing Kernel, Symmetry, Volume 11 (2019) no. 2, p. 226 | DOI:10.3390/sym11020226
  • Дмитрий Александрович Закора; Dmitry Aleksandrovich Zakora Представление решений одного интегро-дифференциального уравнения и приложения, Итоги науки и техники. Серия «Современная математика и ее приложения. Тематические обзоры», Volume 171 (2019), p. 78 | DOI:10.36535/0233-6723-2019-171-78-93
  • E. H. Gomes Tavares; M. A. Jorge Silva; V. Narciso On a decay rate for nonlinear extensible viscoelastic beams with history setting, Applicable Analysis, Volume 97 (2018) no. 11, p. 1916 | DOI:10.1080/00036811.2017.1343940
  • E. H. Gomes Tavares; M. A. Jorge Silva; T. F. Ma Sharp decay rates for a class of nonlinear viscoelastic plate models, Communications in Contemporary Mathematics, Volume 20 (2018) no. 02, p. 1750010 | DOI:10.1142/s0219199717500109
  • Khaled Zennir; Mouhssin Bayoud; Svetlin Georgiev Decay of Solution for Degenerate Wave Equation of Kirchhoff Type in Viscoelasticity, International Journal of Applied and Computational Mathematics, Volume 4 (2018) no. 1 | DOI:10.1007/s40819-018-0488-8
  • M.M. Cavalcanti; V.N. Domingos Cavalcanti; M.A. Jorge Silva; A.Y. de Souza Franco Exponential stability for the wave model with localized memory in a past history framework, Journal of Differential Equations, Volume 264 (2018) no. 11, p. 6535 | DOI:10.1016/j.jde.2018.01.044
  • Muhammad I. Mustafa General decay result for nonlinear viscoelastic equations, Journal of Mathematical Analysis and Applications, Volume 457 (2018) no. 1, p. 134 | DOI:10.1016/j.jmaa.2017.08.019
  • Muhammad I. Mustafa Optimal decay rates for the viscoelastic wave equation, Mathematical Methods in the Applied Sciences, Volume 41 (2018) no. 1, p. 192 | DOI:10.1002/mma.4604
  • D. A. Zakora Exponential Stability of a Certain Semigroup and Applications, Mathematical Notes, Volume 103 (2018) no. 5-6, p. 745 | DOI:10.1134/s0001434618050073
  • Dmitry Aleksandrovich Zakora Экспоненциальная устойчивость одной полугруппы и приложения, Математические заметки, Volume 103 (2018) no. 5, p. 702 | DOI:10.4213/mzm11703
  • Marcelo M. Cavalcanti; Valéria N. Domingos Cavalcanti; Irena Lasiecka; Claudete M. Webler Intrinsic decay rates for the energy of a nonlinear viscoelastic equation modeling the vibrations of thin rods with variable density, Advances in Nonlinear Analysis, Volume 6 (2017) no. 2, p. 121 | DOI:10.1515/anona-2016-0027
  • Muhammad I. Mustafa Memory-type plate system with nonlinear delay, Advances in Pure and Applied Mathematics, Volume 8 (2017) no. 4 | DOI:10.1515/apam-2016-0111
  • Muhammad I. Mustafa; Ghassan A. Abusharkh Plate equations with frictional and viscoelastic dampings, Applicable Analysis, Volume 96 (2017) no. 7, p. 1170 | DOI:10.1080/00036811.2016.1178724
  • Muhammad I. Mustafa Viscoelastic plate equation with boundary feedback, Evolution Equations Control Theory, Volume 6 (2017) no. 2, p. 261 | DOI:10.3934/eect.2017014
  • Irena Lasiecka Global solvability of Moore–Gibson–Thompson equation with memory arising in nonlinear acoustics, Journal of Evolution Equations, Volume 17 (2017) no. 1, p. 411 | DOI:10.1007/s00028-016-0353-3
  • Fatiha Alabau-Boussouira; Yannick Privat; Emmanuel Trélat Nonlinear damped partial differential equations and their uniform discretizations, Journal of Functional Analysis, Volume 273 (2017) no. 1, p. 352 | DOI:10.1016/j.jfa.2017.03.010
  • Muhammad I. Mustafa Energy decay of dissipative plate equations with memory-type boundary conditions, Asymptotic Analysis, Volume 100 (2016) no. 1-2, p. 41 | DOI:10.3233/asy-161385
  • Valéria Neves Domingos Cavalcanti; Irena Lasiecka; Arthur Henrique Caixeta On long time behavior of Moore-Gibson-Thompson equation with molecular relaxation, Evolution Equations and Control Theory, Volume 5 (2016) no. 4, p. 661 | DOI:10.3934/eect.2016024
  • Salah Zitouni; Khaled Zennir On the existence and decay of solution for viscoelastic wave equation with nonlinear source in weighted spaces, Rendiconti del Circolo Matematico di Palermo (1952 -) (2016) | DOI:10.1007/s12215-016-0257-7
  • Irena Lasiecka; Xiaojun Wang Moore–Gibson–Thompson equation with memory, part I: exponential decay of energy, Zeitschrift für angewandte Mathematik und Physik, Volume 67 (2016) no. 2 | DOI:10.1007/s00033-015-0597-8
  • Muhammad I. Mustafa; Mohammad Kafini Energy decay for viscoelastic plates with distributed delay and source term, Zeitschrift für angewandte Mathematik und Physik, Volume 67 (2016) no. 3 | DOI:10.1007/s00033-016-0641-3
  • Jum-Ran Kang Asymptotic behavior to a von Kármán equations of memory type with acoustic boundary conditions, Zeitschrift für angewandte Mathematik und Physik, Volume 67 (2016) no. 3 | DOI:10.1007/s00033-016-0639-x
  • Khaled Zennir General decay of solutions for damped wave equation of Kirchhoff type with density in Rn R n, ANNALI DELL'UNIVERSITA' DI FERRARA, Volume 61 (2015) no. 2, p. 381 | DOI:10.1007/s11565-015-0223-x
  • Muhammad I. Mustafa Energy decay in thermoelasticity with viscoelastic damping of general type, Acta Mathematica Sinica, English Series, Volume 31 (2015) no. 2, p. 331 | DOI:10.1007/s10114-015-2687-0
  • Jum-Ran Kang General stability for a von Kármán plate system with memory boundary conditions, Boundary Value Problems, Volume 2015 (2015) no. 1 | DOI:10.1186/s13661-015-0431-4
  • Jum-Ran Kang A general stability for a von Kármán system with memory, Boundary Value Problems, Volume 2015 (2015) no. 1 | DOI:10.1186/s13661-015-0466-6
  • Muhammad I. Mustafa; Ghassan A. Abusharkh Plate equations with viscoelastic boundary damping, Indagationes Mathematicae, Volume 26 (2015) no. 2, p. 307 | DOI:10.1016/j.indag.2014.09.005
  • Irena Lasiecka; Xiaojun Wang Moore–Gibson–Thompson equation with memory, part II: General decay of energy, Journal of Differential Equations, Volume 259 (2015) no. 12, p. 7610 | DOI:10.1016/j.jde.2015.08.052
  • Mauro Fabrizio; Barbara Lazzari; Roberta Nibbi Asymptotic stability in linear viscoelasticity with supplies, Journal of Mathematical Analysis and Applications, Volume 427 (2015) no. 2, p. 629 | DOI:10.1016/j.jmaa.2015.02.061
  • Marcelo M. Cavalcanti; André D.D. Cavalcanti; Irena Lasiecka; Xiaojun Wang Existence and sharp decay rate estimates for a von Karman system with long memory, Nonlinear Analysis: Real World Applications, Volume 22 (2015), p. 289 | DOI:10.1016/j.nonrwa.2014.09.016
  • Gang Li; Yun Sun; Wenjun Liu Arbitrary decay of solutions for a singular nonlocal viscoelastic problem with a possible damping term, Applicable Analysis, Volume 93 (2014) no. 6, p. 1150 | DOI:10.1080/00036811.2013.821111
  • Marcelo M. Cavalcanti; Valéria N. Domingos Cavalcanti; Irena Lasiecka; Flávio A. Falcão Nascimento Intrinsic decay rate estimates for the wave equation with competing viscoelastic and frictional dissipative effects, Discrete Continuous Dynamical Systems - B, Volume 19 (2014) no. 7, p. 1987 | DOI:10.3934/dcdsb.2014.19.1987
  • Kun-Peng Jin; Jin Liang; Ti-Jun Xiao Coupled second order evolution equations with fading memory: Optimal energy decay rate, Journal of Differential Equations, Volume 257 (2014) no. 5, p. 1501 | DOI:10.1016/j.jde.2014.05.018
  • A. Guesmia; S.A. Messaoudi A new approach to the stability of an abstract system in the presence of infinite history, Journal of Mathematical Analysis and Applications, Volume 416 (2014) no. 1, p. 212 | DOI:10.1016/j.jmaa.2014.02.030
  • Irena Lasiecka; Xiaojun Wang Intrinsic Decay Rate Estimates for Semilinear Abstract Second Order Equations with Memory, New Prospects in Direct, Inverse and Control Problems for Evolution Equations, Volume 10 (2014), p. 271 | DOI:10.1007/978-3-319-11406-4_14
  • Ti-Jun Xiao; Jin Liang Coupled second order semilinear evolution equations indirectly damped via memory effects, Journal of Differential Equations, Volume 254 (2013) no. 5, p. 2128 | DOI:10.1016/j.jde.2012.11.019
  • Irena Lasiecka; Salim A. Messaoudi; Muhammad I. Mustafa Note on intrinsic decay rates for abstract wave equations with memory, Journal of Mathematical Physics, Volume 54 (2013) no. 3 | DOI:10.1063/1.4793988
  • Nasser–eddine Tatar A New Class of Kernels Leading to an Arbitrary Decay in Viscoelasticity, Mediterranean Journal of Mathematics, Volume 10 (2013) no. 1, p. 213 | DOI:10.1007/s00009-012-0177-5
  • Salim A. Messaoudi; Muhammad I. Mustafa A general stability result for a quasilinear wave equation with memory, Nonlinear Analysis: Real World Applications, Volume 14 (2013) no. 4, p. 1854 | DOI:10.1016/j.nonrwa.2012.12.002
  • Salim A. Messaoudi; Muhammad I. Mustafa A general stability result in a memory-type Timoshenko system, Communications on Pure and Applied Analysis, Volume 12 (2012) no. 2, p. 957 | DOI:10.3934/cpaa.2013.12.957
  • Fatiha Alabau-Boussouira On Some Recent Advances on Stabilization for Hyperbolic Equations, Control of Partial Differential Equations, Volume 2048 (2012), p. 1 | DOI:10.1007/978-3-642-27893-8_1
  • Nasser-Eddine Tatar; Yongkun Li Asymptotic Behavior for a Nondissipative and Nonlinear System of the Kirchhoff Viscoelastic Type, Journal of Applied Mathematics, Volume 2012 (2012) no. 1 | DOI:10.1155/2012/936140
  • Muhammad I. Mustafa; Salim A. Messaoudi General stability result for viscoelastic wave equations, Journal of Mathematical Physics, Volume 53 (2012) no. 5 | DOI:10.1063/1.4711830
  • Nasser‐eddine Tatar Oscillating kernels and arbitrary decays in viscoelasticity, Mathematische Nachrichten, Volume 285 (2012) no. 8-9, p. 1130 | DOI:10.1002/mana.201000053
  • Qian Wan; Ti-Jun Xiao Exponential Stability of Two Coupled Second-Order Evolution Equations, Advances in Difference Equations, Volume 2011 (2011), p. 1 | DOI:10.1155/2011/879649
  • Aissa Guesmia Asymptotic stability of abstract dissipative systems with infinite memory, Journal of Mathematical Analysis and Applications, Volume 382 (2011) no. 2, p. 748 | DOI:10.1016/j.jmaa.2011.04.079

Cité par 127 documents. Sources : Crossref

Commentaires - Politique