[Une méthode générale pour obtenir des taux de décroissance de l'énergie des équations d'évolution avec dissipation-mémoire]
On étudie le problème de la stabilisation des équations de type hyperbolique par un feedback-mémoire distribué. L'objet de cette Note est de montrer qu'il existe une méthode constructive générale qui permet d'obtenir un taux de décroissance de l'énergie en fonction du comportement au voisinage de l'infini du noyau. Cette méthode permet de retrouver de manière naturelle les résultats connus (cas exponentiel, polynômial, …) mais aussi de définir une classe très générale et quasi-optimale de noyaux à laquelle elle s'applique. Elle permet de montrer sous une condition, aussi très générale, que l'énergie des solutions décroit au moins aussi vite que le noyau à l'infini.
This Note is concerned with stabilization of hyperbolic systems by a distributed memory feedback. We present here a general method which gives energy decay rates in terms of the asymptotic behavior of the kernel at infinity. This method, which allows us to recover in a natural way the known cases (exponential, polynomial, …), applies to a large quasi-optimal class of kernels. It also provides sharp energy decay rates compared to the ones that are available in the literature. We give a general condition under which the energy of solutions is shown to decay at least as fast as the kernel at infinity.
Accepté le :
Publié le :
Fatiha Alabau-Boussouira 1 ; Piermarco Cannarsa 2
@article{CRMATH_2009__347_15-16_867_0, author = {Fatiha Alabau-Boussouira and Piermarco Cannarsa}, title = {A general method for proving sharp energy decay rates for memory-dissipative evolution equations}, journal = {Comptes Rendus. Math\'ematique}, pages = {867--872}, publisher = {Elsevier}, volume = {347}, number = {15-16}, year = {2009}, doi = {10.1016/j.crma.2009.05.011}, language = {en}, }
TY - JOUR AU - Fatiha Alabau-Boussouira AU - Piermarco Cannarsa TI - A general method for proving sharp energy decay rates for memory-dissipative evolution equations JO - Comptes Rendus. Mathématique PY - 2009 SP - 867 EP - 872 VL - 347 IS - 15-16 PB - Elsevier DO - 10.1016/j.crma.2009.05.011 LA - en ID - CRMATH_2009__347_15-16_867_0 ER -
%0 Journal Article %A Fatiha Alabau-Boussouira %A Piermarco Cannarsa %T A general method for proving sharp energy decay rates for memory-dissipative evolution equations %J Comptes Rendus. Mathématique %D 2009 %P 867-872 %V 347 %N 15-16 %I Elsevier %R 10.1016/j.crma.2009.05.011 %G en %F CRMATH_2009__347_15-16_867_0
Fatiha Alabau-Boussouira; Piermarco Cannarsa. A general method for proving sharp energy decay rates for memory-dissipative evolution equations. Comptes Rendus. Mathématique, Volume 347 (2009) no. 15-16, pp. 867-872. doi : 10.1016/j.crma.2009.05.011. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2009.05.011/
[1] Une formule générale pour le taux de décroissance des systèmes dissipatifs non linéaires, C. R. Acad. Sci. Paris, Ser. I, Volume 338 (2004), pp. 35-40
[2] Convexity and weighted integral inequalities for energy decay rates of nonlinear dissipative hyperbolic systems, Appl. Math. Optim., Volume 51 (2005) no. 1, pp. 61-105
[3] Asymptotic stability of wave equations with memory and frictional boundary dampings, Applicationes Mathematicae, Volume 35 (2008), pp. 247-258
[4] F. Alabau-Boussouira, A unified approach via convexity for optimal energy decay rates of finite and infinite dimensional vibrating damped systems with applications to semi-discretized vibrating damped systems, submitted for publication
[5] F. Alabau-Boussouira, P. Cannarsa, General decay estimates for memory-damped evolution equations, in preparation
[6] Decay estimates for second order evolution equations with memory, J. Funct. Anal., Volume 254 (2008), pp. 1342-1372
[7] Exponential and polynomial stability of a wave equation for boundary memory damping with singular kernels, C. R. Acad. Sci. Paris, Ser. I, Volume 347 (2009), pp. 277-282
[8] Energy decay for Timoshenko systems of memory type, J. Differential Equations, Volume 194 (2003) no. 1, pp. 82-115
[9] Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary, SIAM J. Control Optim., Volume 30 (1992), pp. 1024-1065
[10] A stability result for a class of nonlinear integrodifferential equations with
[11] Frictional versus viscoelastic damping in a semilinear wave equation, SIAM J. Control Optim., Volume 42 (2003), pp. 1310-1324
[12] General decay rate estimates for viscoelastic dissipative systems, Nonlinear Anal., Volume 68 (2008), pp. 177-193
[13] C.M. Dafermos, Asymptotic behavior of solutions of evolution equations, Nonlinear evolution equations, Publ. Math. Res. Center Univ. Wisconsin 40, Academic Press, New York, 1978, pp. 103–123
[14] Exact Controllability and Stabilization, The Multiplier Method, Collection RMA, vol. 36, Masson–John Wiley, Paris–Chichester, 1994
[15] Uniform boundary stabilization of semilinear wave equation with nonlinear boundary damping, Differential Integral Equations, Volume 8 (1993), pp. 507-533
[16] Decay rates for the three-dimensional linear system of thermoelasticity, Arch. Ration. Mech. Anal., Volume 148 (1999), pp. 179-231
[17] Asymptotic behavior of the energy in partially viscoelastic materials, Quart. Appl. Math., Volume 59 (2001), pp. 557-578
[18] Evolutionary Integral Equations and Applications, Monographs in Mathematics, vol. 87, Birkhäuser Verlag, Basel, 1993
[19] Exponential decay for the semilinear wave equation with locally distributed damping, Comm. Partial Differential Equations, Volume 15 (1990), pp. 205-235
- Stability analysis for a Rao-Nakra sandwich beam equation with time-varying weights and frictional dampings, AIMS Mathematics, Volume 9 (2024) no. 5, p. 12570 | DOI:10.3934/math.2024615
- Global attractors for a class of viscoelastic plate equations with past history, AIMS Mathematics, Volume 9 (2024) no. 9, p. 24887 | DOI:10.3934/math.20241212
- Existence and exponential stability for the wave equation with nonlinear interior source and localized viscoelastic boundary feedback, Electronic Journal of Qualitative Theory of Differential Equations (2024) no. 47, p. 1 | DOI:10.14232/ejqtde.2024.1.47
- Admissible Observation Operators of Abstract Linear Viscoelastic Systems, IEEE Transactions on Automatic Control, Volume 69 (2024) no. 12, p. 8449 | DOI:10.1109/tac.2024.3408050
- Stabilisation of linear waves with inhomogeneous Neumann boundary conditions, International Journal of Control (2024), p. 1 | DOI:10.1080/00207179.2024.2417440
- Vibration control of a flexible satellite system with viscoelastic damping, International Journal of Control, Volume 97 (2024) no. 4, p. 673 | DOI:10.1080/00207179.2023.2165163
- Stability Results for a System of Nonlinear Viscoelastic Plate Equations with Nonlinear Frictional Damping and Logarithmic Source Terms, Journal of Dynamical and Control Systems, Volume 30 (2024) no. 1 | DOI:10.1007/s10883-023-09676-8
- Asymptotic Behavior of Solutions of a Complete Second-Order Integro-Differential Equation, Journal of Mathematical Sciences, Volume 282 (2024) no. 3, p. 362 | DOI:10.1007/s10958-024-07182-1
- New general decay results for a fully dynamic piezoelectric beam system with fractional delays under memory boundary controls, Mathematical Methods in the Applied Sciences, Volume 47 (2024) no. 1, p. 229 | DOI:10.1002/mma.9653
- Existence and general decay rate estimates of a coupled Lamé system only with viscoelastic dampings, Mathematical Methods in the Applied Sciences, Volume 47 (2024) no. 13, p. 10828 | DOI:10.1002/mma.6586
- Global well-posedness and stability results for an abstract viscoelastic equation with a non-constant delay term and nonlinear weight, Ricerche di Matematica, Volume 73 (2024) no. 1, p. 433 | DOI:10.1007/s11587-021-00617-w
- A new approach to abstract linear viscoelastic equation in Hilbert space, Zeitschrift für angewandte Mathematik und Physik, Volume 75 (2024) no. 1 | DOI:10.1007/s00033-023-02159-7
- Optimal decay rate and blow-up of solution for a classical thermoelastic system with viscoelastic damping and nonlinear sources, Zeitschrift für angewandte Mathematik und Physik, Volume 75 (2024) no. 5 | DOI:10.1007/s00033-024-02310-y
- Asymptotic stability of a quasi-linear viscoelastic Kirchhoff plate equation with logarithmic source and time delay, AIMS Mathematics, Volume 8 (2023) no. 10, p. 24087 | DOI:10.3934/math.20231228
- General decay of solutions for a von Karman plate system with general type of relaxation functions on the boundary, AIMS Mathematics, Volume 9 (2023) no. 1, p. 2308 | DOI:10.3934/math.2024114
- Viscoelasticity versus nonlinear feedback in plate systems: optimal decay, Applicable Analysis, Volume 102 (2023) no. 15, p. 4140 | DOI:10.1080/00036811.2022.2107906
- On general decay for a nonlinear viscoelastic equation, Applicable Analysis, Volume 102 (2023) no. 6, p. 1582 | DOI:10.1080/00036811.2021.1992394
- General decay result for the wave equation with memory and acoustic boundary conditions, Applied Mathematics Letters, Volume 135 (2023), p. 108385 | DOI:10.1016/j.aml.2022.108385
- A general stability result for a von Karman system with memory and nonlinear boundary delay term, Applied Mathematics Letters, Volume 138 (2023), p. 108512 | DOI:10.1016/j.aml.2022.108512
- Optimal memory-type boundary control of the Bresse system, Asymptotic Analysis, Volume 132 (2023) no. 1-2, p. 29 | DOI:10.3233/asy-221784
- Uniform stability of a strong time-delayed viscoelastic system with Balakrishnan–Taylor damping, Boundary Value Problems, Volume 2023 (2023) no. 1 | DOI:10.1186/s13661-023-01749-8
- Optimal energy decay rates for viscoelastic wave equations with nonlinearity of variable exponent, Electronic Journal of Differential Equations, Volume 2023 (2023) no. 01-??, p. 53 | DOI:10.58997/ejde.2023.53
- Theoretical and computational decay results for a Bresse system with one infinite memory in the longitudinal displacement, Evolution Equations and Control Theory, Volume 12 (2023) no. 1, p. 191 | DOI:10.3934/eect.2022027
- Asymptotic Behaviour of the Eenergy to the Viscoelastic Wave Equation with Localized Hereditary Memory and Supercritical Source Term, Journal of Dynamics and Differential Equations, Volume 35 (2023) no. 4, p. 3381 | DOI:10.1007/s10884-022-10142-5
- Qualitative properties of solution to a viscoelastic Kirchhoff-like plate equation, Journal of Mathematical Physics, Volume 64 (2023) no. 5 | DOI:10.1063/5.0149240
- Theoretical and computational decay results for a memory type wave equation with variable-exponent nonlinearity, Mathematical Control and Related Fields, Volume 13 (2023) no. 2, p. 605 | DOI:10.3934/mcrf.2022010
- A general decay criterion for a viscoelastic equation with nonlinear distributed delay and damping effects, Mathematical Methods in the Applied Sciences, Volume 46 (2023) no. 17, p. 17910 | DOI:10.1002/mma.9537
- Stability of viscoelastic wave equation with distributed delay and logarithmic nonlinearity, Mathematical Methods in the Applied Sciences, Volume 46 (2023) no. 4, p. 4728 | DOI:10.1002/mma.8797
- General Stability for the Viscoelastic Wave Equation with Nonlinear Time-Varying Delay, Nonlinear Damping and Acoustic Boundary Conditions, Mathematics, Volume 11 (2023) no. 22, p. 4593 | DOI:10.3390/math11224593
- Stability results for piezoelectric beams with long‐range memory effects in the boundary, Mathematische Nachrichten, Volume 296 (2023) no. 9, p. 4206 | DOI:10.1002/mana.202100583
- General decay of the solution to a nonlinear viscoelastic beam with delay, Partial Differential Equations and Applications, Volume 4 (2023) no. 3 | DOI:10.1007/s42985-023-00238-y
- Decay rate of solutions to the Cauchy problem for a coupled system of viscoelastic wave equations with a strong delay in Rⁿ, Studia Universitatis Babes-Bolyai Matematica, Volume 68 (2023) no. 4, p. 895 | DOI:10.24193/subbmath.2023.4.16
- Existence and General Decay of Solutions for a Weakly Coupled System of Viscoelastic Kirchhoff Plate and Wave Equations, Symmetry, Volume 15 (2023) no. 10, p. 1917 | DOI:10.3390/sym15101917
- Exponential Stability for the 2D Wave Model with Localized Memory in a Past History Framework and Nonlinearity of Arbitrary Growth, The Journal of Geometric Analysis, Volume 33 (2023) no. 2 | DOI:10.1007/s12220-022-01085-w
- Optimal decay for a wave transmission problem with fading memory, Applicable Analysis, Volume 101 (2022) no. 6, p. 1984 | DOI:10.1080/00036811.2020.1798413
- Stability for Locally Coupled Wave-Type Systems with Indirect Mixed-Type Dampings, Applied Mathematics Optimization, Volume 85 (2022) no. 1 | DOI:10.1007/s00245-022-09830-x
- Optimal decay of an abstract nonlinear viscoelastic equation in Hilbert spaces with delay term in the nonlinear internal damping, Asymptotic Analysis, Volume 126 (2022) no. 1-2, p. 65 | DOI:10.3233/asy-201664
- General decay for second-order abstract viscoelastic equation in Hilbert spaces with time delay, Boletim da Sociedade Paranaense de Matemática, Volume 41 (2022), p. 1 | DOI:10.5269/bspm.52175
- Asymptotic Behavior of Solutions of a Complete Second-Order Integro-Differential Equation, Contemporary Mathematics. Fundamental Directions, Volume 68 (2022) no. 3, p. 451 | DOI:10.22363/2413-3639-2022-68-3-451-466
- Existence and general decay of Balakrishnan-Taylor viscoelastic equation with nonlinear frictional damping and logarithmic source term, Evolution Equations and Control Theory, Volume 11 (2022) no. 4, p. 1149 | DOI:10.3934/eect.2021038
- Representation of Solutions of a Certain Integro-Differential Equation and Applications, Journal of Mathematical Sciences, Volume 263 (2022) no. 5, p. 675 | DOI:10.1007/s10958-022-05958-x
- A Stability Result for a Viscoelastic Wave Equation in the Presence of Finite and Infinite Memories, Journal of Mathematics, Volume 2022 (2022) no. 1 | DOI:10.1155/2022/2697155
- Exponential decay for nonlinear abstract evolution equations with a countably infinite number of time‐dependent time delays, Mathematical Methods in the Applied Sciences, Volume 45 (2022) no. 4, p. 2413 | DOI:10.1002/mma.7936
- Indirect stabilization of coupled abstract evolution equations with memory: Different propagation speeds, Mathematical Methods in the Applied Sciences, Volume 45 (2022) no. 8, p. 4451 | DOI:10.1002/mma.8048
- Numerical and Theoretical Stability Study of a Viscoelastic Plate Equation with Nonlinear Frictional Damping Term and a Logarithmic Source Term, Mathematical and Computational Applications, Volume 27 (2022) no. 1, p. 10 | DOI:10.3390/mca27010010
- Theoretical and Computational Results of a Memory-Type Swelling Porous-Elastic System, Mathematical and Computational Applications, Volume 27 (2022) no. 2, p. 27 | DOI:10.3390/mca27020027
- Unified stability analysis for a Volterra integro-differential equation under creation time perspective, Zeitschrift für angewandte Mathematik und Physik, Volume 73 (2022) no. 3 | DOI:10.1007/s00033-022-01756-2
- General decay rates for a von Kármán plate model with memory, Zeitschrift für angewandte Mathematik und Physik, Volume 73 (2022) no. 6 | DOI:10.1007/s00033-022-01880-z
- Global existence and new decay results of a viscoelastic wave equation with variable exponent and logarithmic nonlinearities, AIMS Mathematics, Volume 6 (2021) no. 9, p. 10105 | DOI:10.3934/math.2021587
- The control of Timoshenko beams by memory-type boundary conditions, Applicable Analysis, Volume 100 (2021) no. 2, p. 290 | DOI:10.1080/00036811.2019.1602724
- Optimized Uniform Decay Estimate of the Solution to Petrovsky Equation with Memory, Applied Mathematics Optimization, Volume 84 (2021) no. 1, p. 711 | DOI:10.1007/s00245-020-09659-2
- Generalized Conditions and Improved Method on Asymptotic Stability for a Wave Equation with Variable Density, Applied Mathematics Optimization, Volume 84 (2021) no. S1, p. 437 | DOI:10.1007/s00245-021-09775-7
- Existence and decay of solution to coupled system of viscoelastic wave equations with strong damping in Rn, Boletim da Sociedade Paranaense de Matemática, Volume 39 (2021) no. 6, p. 31 | DOI:10.5269/bspm.41175
- Long-term dynamical behavior of the wave model with locally distributed frictional and viscoelastic damping, Communications in Nonlinear Science and Numerical Simulation, Volume 92 (2021), p. 105472 | DOI:10.1016/j.cnsns.2020.105472
- New general stability for a variable coefficient thermo-viscoelastic-coupled system of second sound with acoustic boundary conditions, Computational and Applied Mathematics, Volume 40 (2021) no. 3 | DOI:10.1007/s40314-021-01459-w
- Optimal decay for second‐order abstract viscoelastic equation in Hilbert spaces with infinite memory and time delay, Mathematical Methods in the Applied Sciences, Volume 44 (2021) no. 2, p. 2071 | DOI:10.1002/mma.6917
- A New General Decay Rate of Wave Equation with Memory-Type Boundary Control, Mathematical Problems in Engineering, Volume 2021 (2021), p. 1 | DOI:10.1155/2021/5571072
- Exponential decay for semilinear wave equations with viscoelastic damping and delay feedback, Mathematics of Control, Signals, and Systems, Volume 33 (2021) no. 4, p. 617 | DOI:10.1007/s00498-021-00292-0
- On the Control of Dissipative Viscoelastic Timoshenko Beams, Mediterranean Journal of Mathematics, Volume 18 (2021) no. 2 | DOI:10.1007/s00009-020-01680-7
- Stability results for second-order abstract viscoelastic equation in Hilbert spaces with time-varying delay, Zeitschrift für angewandte Mathematik und Physik, Volume 72 (2021) no. 2 | DOI:10.1007/s00033-021-01477-y
- Optimal energy decay result for nonlinear abstract viscoelastic dissipative systems, Zeitschrift für angewandte Mathematik und Physik, Volume 72 (2021) no. 2 | DOI:10.1007/s00033-021-01498-7
- General Decay Result for a Type III Thermoelastic Coupled System with Acoustic Boundary Conditions in the Presence of Distributed Delay, Zurnal matematiceskoj fiziki, analiza, geometrii, Volume 17 (2021) no. 2, p. 175 | DOI:10.15407/mag17.02.175
- Polynomial decay rate for a new class of viscoelastic Kirchhoff equation related with Balakrishnan-Taylor dissipation and logarithmic source terms, Alexandria Engineering Journal, Volume 59 (2020) no. 3, p. 1059 | DOI:10.1016/j.aej.2019.12.013
- Stability result of a viscoelastic plate equation with past history and a logarithmic nonlinearity, Boundary Value Problems, Volume 2020 (2020) no. 1 | DOI:10.1186/s13661-020-01382-9
- Optimal Decay Rate Estimates of a Nonlinear Viscoelastic Kirchhoff Plate, Complexity, Volume 2020 (2020), p. 1 | DOI:10.1155/2020/6079507
- Long-time behavior of a class of viscoelastic plate equations, Electronic Research Archive, Volume 28 (2020) no. 1, p. 311 | DOI:10.3934/era.2020018
- Stability for semilinear hyperbolic coupled system with frictional and viscoelastic localized damping, Journal of Differential Equations, Volume 269 (2020) no. 10, p. 8212 | DOI:10.1016/j.jde.2020.06.013
- Asymptotic Stability for a Viscoelastic Equation with Nonlinear Damping and Very General Type of Relaxation Functions, Journal of Dynamical and Control Systems, Volume 26 (2020) no. 1, p. 45 | DOI:10.1007/s10883-019-9429-z
- DECAY RATES FOR A COUPLED VISCOELASTIC LAMÉ SYSTEM WITH STRONG DAMPING, Mathematical Modelling and Analysis, Volume 25 (2020) no. 2, p. 226 | DOI:10.3846/mma.2020.10383
- General Decay Rate of Solution for Love-Equation with Past History and Absorption, Mathematics, Volume 8 (2020) no. 9, p. 1632 | DOI:10.3390/math8091632
- Memory-type boundary control of a laminated Timoshenko beam, Mathematics and Mechanics of Solids, Volume 25 (2020) no. 8, p. 1568 | DOI:10.1177/1081286520911078
- A general stability result for the semilinear viscoelastic wave model under localized effects, Nonlinear Analysis: Real World Applications, Volume 56 (2020), p. 103158 | DOI:10.1016/j.nonrwa.2020.103158
- General decay of energy for a viscoelastic wave equation with a distributed delay term in the nonlinear internal dambing, Rendiconti del Circolo Matematico di Palermo Series 2, Volume 69 (2020) no. 3, p. 861 | DOI:10.1007/s12215-019-00443-y
- General decay properties of abstract linear viscoelasticity, Zeitschrift für angewandte Mathematik und Physik, Volume 71 (2020) no. 1 | DOI:10.1007/s00033-019-1229-5
- New general decay results for a viscoelastic plate equation with a logarithmic nonlinearity, Boundary Value Problems, Volume 2019 (2019) no. 1 | DOI:10.1186/s13661-019-01308-0
- On the General Decay for a System of Viscoelastic Wave Equations, Current Trends in Mathematical Analysis and Its Interdisciplinary Applications (2019), p. 287 | DOI:10.1007/978-3-030-15242-0_10
- Decay rates for a coupled quasilinear system of nonlinear viscoelastic equations, Journal of Applied Analysis, Volume 25 (2019) no. 1, p. 97 | DOI:10.1515/jaa-2019-0011
- Asymptotic Stability for the Second Order Evolution Equation with Memory, Journal of Dynamical and Control Systems, Volume 25 (2019) no. 2, p. 263 | DOI:10.1007/s10883-018-9410-2
- General and Optimal Decay Result for a Viscoelastic Problem with Nonlinear Boundary Feedback, Journal of Dynamical and Control Systems, Volume 25 (2019) no. 4, p. 551 | DOI:10.1007/s10883-018-9422-y
- Energy Decay in a Quasilinear System with Finite and Infinite Memories, Mathematical Methods in Engineering, Volume 23 (2019), p. 235 | DOI:10.1007/978-3-319-91065-9_12
- General decay of nonlinear viscoelastic Kirchhoff equation with Balakrishnan‐Taylor damping and logarithmic nonlinearity, Mathematical Methods in the Applied Sciences, Volume 42 (2019) no. 14, p. 4795 | DOI:10.1002/mma.5693
- Polynomial Decay Rate for Kirchhoff Type in Viscoelasticity with Logarithmic Nonlinearity and Not Necessarily Decreasing Kernel, Symmetry, Volume 11 (2019) no. 2, p. 226 | DOI:10.3390/sym11020226
- Представление решений одного интегро-дифференциального уравнения и приложения, Итоги науки и техники. Серия «Современная математика и ее приложения. Тематические обзоры», Volume 171 (2019), p. 78 | DOI:10.36535/0233-6723-2019-171-78-93
- On a decay rate for nonlinear extensible viscoelastic beams with history setting, Applicable Analysis, Volume 97 (2018) no. 11, p. 1916 | DOI:10.1080/00036811.2017.1343940
- Sharp decay rates for a class of nonlinear viscoelastic plate models, Communications in Contemporary Mathematics, Volume 20 (2018) no. 02, p. 1750010 | DOI:10.1142/s0219199717500109
- Decay of Solution for Degenerate Wave Equation of Kirchhoff Type in Viscoelasticity, International Journal of Applied and Computational Mathematics, Volume 4 (2018) no. 1 | DOI:10.1007/s40819-018-0488-8
- Exponential stability for the wave model with localized memory in a past history framework, Journal of Differential Equations, Volume 264 (2018) no. 11, p. 6535 | DOI:10.1016/j.jde.2018.01.044
- General decay result for nonlinear viscoelastic equations, Journal of Mathematical Analysis and Applications, Volume 457 (2018) no. 1, p. 134 | DOI:10.1016/j.jmaa.2017.08.019
- Optimal decay rates for the viscoelastic wave equation, Mathematical Methods in the Applied Sciences, Volume 41 (2018) no. 1, p. 192 | DOI:10.1002/mma.4604
- Exponential Stability of a Certain Semigroup and Applications, Mathematical Notes, Volume 103 (2018) no. 5-6, p. 745 | DOI:10.1134/s0001434618050073
- Экспоненциальная устойчивость одной полугруппы и приложения, Математические заметки, Volume 103 (2018) no. 5, p. 702 | DOI:10.4213/mzm11703
- Intrinsic decay rates for the energy of a nonlinear viscoelastic equation modeling the vibrations of thin rods with variable density, Advances in Nonlinear Analysis, Volume 6 (2017) no. 2, p. 121 | DOI:10.1515/anona-2016-0027
- Memory-type plate system with nonlinear delay, Advances in Pure and Applied Mathematics, Volume 8 (2017) no. 4 | DOI:10.1515/apam-2016-0111
- Plate equations with frictional and viscoelastic dampings, Applicable Analysis, Volume 96 (2017) no. 7, p. 1170 | DOI:10.1080/00036811.2016.1178724
- Viscoelastic plate equation with boundary feedback, Evolution Equations Control Theory, Volume 6 (2017) no. 2, p. 261 | DOI:10.3934/eect.2017014
- Global solvability of Moore–Gibson–Thompson equation with memory arising in nonlinear acoustics, Journal of Evolution Equations, Volume 17 (2017) no. 1, p. 411 | DOI:10.1007/s00028-016-0353-3
- Nonlinear damped partial differential equations and their uniform discretizations, Journal of Functional Analysis, Volume 273 (2017) no. 1, p. 352 | DOI:10.1016/j.jfa.2017.03.010
- Energy decay of dissipative plate equations with memory-type boundary conditions, Asymptotic Analysis, Volume 100 (2016) no. 1-2, p. 41 | DOI:10.3233/asy-161385
- On long time behavior of Moore-Gibson-Thompson equation with molecular relaxation, Evolution Equations and Control Theory, Volume 5 (2016) no. 4, p. 661 | DOI:10.3934/eect.2016024
- On the existence and decay of solution for viscoelastic wave equation with nonlinear source in weighted spaces, Rendiconti del Circolo Matematico di Palermo (1952 -) (2016) | DOI:10.1007/s12215-016-0257-7
- Moore–Gibson–Thompson equation with memory, part I: exponential decay of energy, Zeitschrift für angewandte Mathematik und Physik, Volume 67 (2016) no. 2 | DOI:10.1007/s00033-015-0597-8
- Energy decay for viscoelastic plates with distributed delay and source term, Zeitschrift für angewandte Mathematik und Physik, Volume 67 (2016) no. 3 | DOI:10.1007/s00033-016-0641-3
- Asymptotic behavior to a von Kármán equations of memory type with acoustic boundary conditions, Zeitschrift für angewandte Mathematik und Physik, Volume 67 (2016) no. 3 | DOI:10.1007/s00033-016-0639-x
- General decay of solutions for damped wave equation of Kirchhoff type with density in
R n, ANNALI DELL'UNIVERSITA' DI FERRARA, Volume 61 (2015) no. 2, p. 381 | DOI:10.1007/s11565-015-0223-x - Energy decay in thermoelasticity with viscoelastic damping of general type, Acta Mathematica Sinica, English Series, Volume 31 (2015) no. 2, p. 331 | DOI:10.1007/s10114-015-2687-0
- General stability for a von Kármán plate system with memory boundary conditions, Boundary Value Problems, Volume 2015 (2015) no. 1 | DOI:10.1186/s13661-015-0431-4
- A general stability for a von Kármán system with memory, Boundary Value Problems, Volume 2015 (2015) no. 1 | DOI:10.1186/s13661-015-0466-6
- Plate equations with viscoelastic boundary damping, Indagationes Mathematicae, Volume 26 (2015) no. 2, p. 307 | DOI:10.1016/j.indag.2014.09.005
- Moore–Gibson–Thompson equation with memory, part II: General decay of energy, Journal of Differential Equations, Volume 259 (2015) no. 12, p. 7610 | DOI:10.1016/j.jde.2015.08.052
- Asymptotic stability in linear viscoelasticity with supplies, Journal of Mathematical Analysis and Applications, Volume 427 (2015) no. 2, p. 629 | DOI:10.1016/j.jmaa.2015.02.061
- Existence and sharp decay rate estimates for a von Karman system with long memory, Nonlinear Analysis: Real World Applications, Volume 22 (2015), p. 289 | DOI:10.1016/j.nonrwa.2014.09.016
- Arbitrary decay of solutions for a singular nonlocal viscoelastic problem with a possible damping term, Applicable Analysis, Volume 93 (2014) no. 6, p. 1150 | DOI:10.1080/00036811.2013.821111
- Intrinsic decay rate estimates for the wave equation with competing viscoelastic and frictional dissipative effects, Discrete Continuous Dynamical Systems - B, Volume 19 (2014) no. 7, p. 1987 | DOI:10.3934/dcdsb.2014.19.1987
- Coupled second order evolution equations with fading memory: Optimal energy decay rate, Journal of Differential Equations, Volume 257 (2014) no. 5, p. 1501 | DOI:10.1016/j.jde.2014.05.018
- A new approach to the stability of an abstract system in the presence of infinite history, Journal of Mathematical Analysis and Applications, Volume 416 (2014) no. 1, p. 212 | DOI:10.1016/j.jmaa.2014.02.030
- Intrinsic Decay Rate Estimates for Semilinear Abstract Second Order Equations with Memory, New Prospects in Direct, Inverse and Control Problems for Evolution Equations, Volume 10 (2014), p. 271 | DOI:10.1007/978-3-319-11406-4_14
- Coupled second order semilinear evolution equations indirectly damped via memory effects, Journal of Differential Equations, Volume 254 (2013) no. 5, p. 2128 | DOI:10.1016/j.jde.2012.11.019
- Note on intrinsic decay rates for abstract wave equations with memory, Journal of Mathematical Physics, Volume 54 (2013) no. 3 | DOI:10.1063/1.4793988
- A New Class of Kernels Leading to an Arbitrary Decay in Viscoelasticity, Mediterranean Journal of Mathematics, Volume 10 (2013) no. 1, p. 213 | DOI:10.1007/s00009-012-0177-5
- A general stability result for a quasilinear wave equation with memory, Nonlinear Analysis: Real World Applications, Volume 14 (2013) no. 4, p. 1854 | DOI:10.1016/j.nonrwa.2012.12.002
- A general stability result in a memory-type Timoshenko system, Communications on Pure and Applied Analysis, Volume 12 (2012) no. 2, p. 957 | DOI:10.3934/cpaa.2013.12.957
- On Some Recent Advances on Stabilization for Hyperbolic Equations, Control of Partial Differential Equations, Volume 2048 (2012), p. 1 | DOI:10.1007/978-3-642-27893-8_1
- Asymptotic Behavior for a Nondissipative and Nonlinear System of the Kirchhoff Viscoelastic Type, Journal of Applied Mathematics, Volume 2012 (2012) no. 1 | DOI:10.1155/2012/936140
- General stability result for viscoelastic wave equations, Journal of Mathematical Physics, Volume 53 (2012) no. 5 | DOI:10.1063/1.4711830
- Oscillating kernels and arbitrary decays in viscoelasticity, Mathematische Nachrichten, Volume 285 (2012) no. 8-9, p. 1130 | DOI:10.1002/mana.201000053
- Exponential Stability of Two Coupled Second-Order Evolution Equations, Advances in Difference Equations, Volume 2011 (2011), p. 1 | DOI:10.1155/2011/879649
- Asymptotic stability of abstract dissipative systems with infinite memory, Journal of Mathematical Analysis and Applications, Volume 382 (2011) no. 2, p. 748 | DOI:10.1016/j.jmaa.2011.04.079
Cité par 127 documents. Sources : Crossref
Commentaires - Politique