In this note we provide two special counterexamples to the strong real Jacobian Conjecture; the first one is surjective, the second one has non-dense image.
Dans cette note, nous fournissons deux contre-exemples spéciaux à la forte conjecture jacobienne réelle ; le premier est surjectif, le second a une image non dense.
Revised:
Accepted:
Published online:
Filipe Fernandes 1; Zbigniew Jelonek 2, 3

@article{CRMATH_2024__362_G4_449_0, author = {Filipe Fernandes and Zbigniew Jelonek}, title = {The {Pinchuk} example revisited}, journal = {Comptes Rendus. Math\'ematique}, pages = {449--452}, publisher = {Acad\'emie des sciences, Paris}, volume = {362}, year = {2024}, doi = {10.5802/crmath.570}, language = {en}, }
Filipe Fernandes; Zbigniew Jelonek. The Pinchuk example revisited. Comptes Rendus. Mathématique, Volume 362 (2024), pp. 449-452. doi : 10.5802/crmath.570. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.570/
[1] The Jacobian conjecture: reduction of degree and formal expansion of the inverse, Bull. Am. Math. Soc., Volume 7 (1982), pp. 287-330 | DOI | MR | Zbl
[2] Very degenerate polynomial submersions and counterexamples to the real Jacobian conjecture, J. Pure Appl. Algebra, Volume 227 (2023) no. 8, 107345 | DOI | MR | Zbl
[3] Remarks on the real Jacobian conjecture and Samuelson maps, Appl. Math. Lett., Volume 10 (1997) no. 4, pp. 1-3 | DOI | MR | Zbl
[4] Polynomial Automorphisms and the Jacobian Conjecture, Progress in Mathematics, 190, Birkhäuser, 2000 | DOI | MR | Zbl
[5] A new class of non-injective polynomial local diffeomorphisms on the plane, J. Math. Anal. Appl., Volume 507 (2021), 125736 | Zbl
[6] Ganze Cremona–Transformationen, Monatsh. Math. Phys., Volume 47 (1939), pp. 299-306 | DOI | Zbl
[7] A counterexample to the strong real Jacobian Conjecture, Math. Z., Volume 217 (1994) no. 1, pp. 1-4 | DOI | MR | Zbl
[8] The real Jacobian problem, Singularities, Part 2 (Arcata, Calif., 1981) (P. Orlik, ed.) (Proceedings of Symposia in Pure Mathematics), Volume 40, American Mathematical Society, 1983, pp. 411-414 | MR | Zbl
Cited by Sources:
Comments - Policy