[La finitude du groupe de Tate–Shafarevich sur les corps de fonctions pour les tores algébriques définis sur le corps de base]
Soit un corps et un ensemble de valuations de rang un de . Le groupe de Tate–Shafarevich d’un -tore T est . Nous montrons que si est le corps de fonctions d’une variété lisse géométriquement intègre quasi-projective définie sur un corps de caractéristique 0 et que est l’ensemble des valuations discrètes de associées aux diviseurs irréductibles de , alors pour tout tore défini sur le corps de base , le groupe est fini dans les situations suivantes : (1) est de type fini sur le corps premier et ; (2) est un corps de nombres.
Let be a field and be a set of rank one valuations of . The corresponding Tate–Shafarevich group of a -torus is . We prove that if is the function field of a smooth geometrically integral quasi-projective variety over a field of characteristic 0 and is the set of discrete valuations of associated with prime divisors on , then for any torus defined over the base field , the group is finite in the following situations: (1) is finitely generated and ; (2) is a number field.
Révisé le :
Accepté le :
Publié le :
Andrei Rapinchuk 1 ; Igor Rapinchuk 2
@article{CRMATH_2024__362_G7_739_0, author = {Andrei Rapinchuk and Igor Rapinchuk}, title = {The finiteness of the {Tate{\textendash}Shafarevich} group over function fields for algebraic tori defined over the base field}, journal = {Comptes Rendus. Math\'ematique}, pages = {739--749}, publisher = {Acad\'emie des sciences, Paris}, volume = {362}, year = {2024}, doi = {10.5802/crmath.588}, language = {en}, }
TY - JOUR AU - Andrei Rapinchuk AU - Igor Rapinchuk TI - The finiteness of the Tate–Shafarevich group over function fields for algebraic tori defined over the base field JO - Comptes Rendus. Mathématique PY - 2024 SP - 739 EP - 749 VL - 362 PB - Académie des sciences, Paris DO - 10.5802/crmath.588 LA - en ID - CRMATH_2024__362_G7_739_0 ER -
%0 Journal Article %A Andrei Rapinchuk %A Igor Rapinchuk %T The finiteness of the Tate–Shafarevich group over function fields for algebraic tori defined over the base field %J Comptes Rendus. Mathématique %D 2024 %P 739-749 %V 362 %I Académie des sciences, Paris %R 10.5802/crmath.588 %G en %F CRMATH_2024__362_G7_739_0
Andrei Rapinchuk; Igor Rapinchuk. The finiteness of the Tate–Shafarevich group over function fields for algebraic tori defined over the base field. Comptes Rendus. Mathématique, Volume 362 (2024), pp. 739-749. doi : 10.5802/crmath.588. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.588/
[1] Deligne’s notes on Nagata compactifications, J. Ramanujan Math. Soc., Volume 22 (2007) no. 3, pp. 205-257 | Zbl
[2] Principal homogeneous spaces under flasque tori; applications, J. Algebra, Volume 106 (1987), pp. 148-205 | DOI | Zbl
[3] A proof of the Grothendieck–Serre conjecture on principal bundles over regular local rings containing infinite fields, Publ. Math., Inst. Hautes Étud. Sci., Volume 122 (2015), pp. 169-193 | DOI | Numdam | Zbl
[4] On the Picard group: Torsion and the kernel induced by a faithfully flat map, J. Algebra, Volume 183 (1996) no. 2, pp. 420-455 | DOI | Zbl
[5] Bertini theorems revisited, J. Lond. Math. Soc., Volume 108 (2023) no. 3, pp. 1163-1192 | DOI | Zbl
[6] The Grothendieck–Serre conjecture over semilocal Dedekind rings, Transform. Groups, Volume 27 (2022) no. 3, pp. 897-917 | DOI | Zbl
[7] Algebraic geometry I. Schemes. With examples and exercises, Springer Studium Mathematik – Master, Springer, 2020 | DOI | Zbl
[8] Algebraic geometry, Graduate Texts in Mathematics, 52, Springer, 1977 | DOI | Zbl
[9] On Tate–Shafarevich groups of one-dimensional families of commutative group schemes over number fields, Math. Z., Volume 302 (2022) no. 2, pp. 935-948 | DOI | Zbl
[10] Bertini theorems for hypersurface sections containing a subscheme, Commun. Algebra, Volume 7 (1979), pp. 775-790 | DOI | Zbl
[11] On the class group of an arithmetic scheme, Bull. Soc. Math. Fr., Volume 134 (2006) no. 3, pp. 395-415 | DOI | Zbl
[12] Number of points of varieties in finite fields, Am. J. Math., Volume 76 (1954), pp. 819-827 | DOI | Zbl
[13] On compactification of schemes, Manuscr. Math., Volume 80 (1993) no. 1, pp. 95-111 | DOI | Zbl
[14] Class Field Theory (available on the author’s website at https://www.jmilne.org/math/CourseNotes/cft.html)
[15] Rationally trivial principal homogeneous spaces and arithmetic of reductive group schemes over Dedekind rings, C. R. Math. Acad. Sci. Paris, Volume 299 (1984), pp. 5-8 | Zbl
[16] Algebraic groups and number theory, Pure and Applied Mathematics, 139, Academic Press Inc., 1994 (transl. from the russian by Rachel Rowen) | Zbl
[17] Simple algebraic groups with good reduction, the genus problem, and unramified cohomology (in preparation)
[18] Linear algebraic groups with good reduction, Res. Math. Sci., Volume 7 (2020) no. 3, 28 | DOI | Zbl
[19] Finiteness theorems for algebraic tori over function fields, C. R. Math. Acad. Sci. Paris, Volume 359 (2021) no. 8, pp. 939-944 | DOI | Numdam | Zbl
[20] Some finiteness results for algebraic groups and unramified cohomology over higher-dimensional fields, J. Number Theory, Volume 233 (2022), pp. 228-260 | DOI | Zbl
[21] Properness of the global-to-local map for algebraic groups with toric connected component and other finiteness properties, Math. Res. Lett., Volume 30 (2023) no. 3, pp. 913-943 | DOI | Zbl
[22] Galois cohomology, Springer, 1997 | DOI
[23] Algebraic Groups and Their Birational Invariants, Translations of Mathematical Monographs, 179, American Mathematical Society, 1998 | Zbl
[24] Stacks Project (https://stacks.math.columbia.edu)
Cité par Sources :
Commentaires - Politique