Nous présentons plusieurs résultats de finitude pour les tores (et, plus généralement, pour les groupes algébriques dont la composante connexe est un tore) définis sur les corps de type fini et les corps de fonctions des variétés algébriques définies sur les corps satisfaisant la condition (F) de Serre.
We present a number of finiteness results for algebraic tori (and, more generally, for algebraic groups with toric connected component) over two classes of fields: finitely generated fields and function fields of algebraic varieties over fields of type (F), as defined by J.-P. Serre.
Accepté le :
Accepté après révision le :
Publié le :
Andrei S. Rapinchuk 1 ; Igor A. Rapinchuk 2
@article{CRMATH_2021__359_8_939_0, author = {Andrei S. Rapinchuk and Igor A. Rapinchuk}, title = {Finiteness theorems for algebraic tori over function fields}, journal = {Comptes Rendus. Math\'ematique}, pages = {939--944}, publisher = {Acad\'emie des sciences, Paris}, volume = {359}, number = {8}, year = {2021}, doi = {10.5802/crmath.248}, language = {en}, }
TY - JOUR AU - Andrei S. Rapinchuk AU - Igor A. Rapinchuk TI - Finiteness theorems for algebraic tori over function fields JO - Comptes Rendus. Mathématique PY - 2021 SP - 939 EP - 944 VL - 359 IS - 8 PB - Académie des sciences, Paris DO - 10.5802/crmath.248 LA - en ID - CRMATH_2021__359_8_939_0 ER -
Andrei S. Rapinchuk; Igor A. Rapinchuk. Finiteness theorems for algebraic tori over function fields. Comptes Rendus. Mathématique, Volume 359 (2021) no. 8, pp. 939-944. doi : 10.5802/crmath.248. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.248/
[1] Some finiteness properties of adele groups over number fields, Publ. Math., Inst. Hautes Étud. Sci., Volume 16 (1963), pp. 101-126 | Numdam | MR | Zbl
[2] Théorèmes de finitude en cohomologie galoisienne, Comment. Math. Helv., Volume 39 (1964), pp. 111-164 | DOI | Zbl
[3] Spinor groups with good reduction, Compos. Math., Volume 155 (2019) no. 3, pp. 484-527 | DOI | MR | Zbl
[4] The finiteness of the genus of a finite-dimensional division algebra, and some generalizations, Isr. J. Math., Volume 236 (2020) no. 2, pp. 747-799 | DOI | MR | Zbl
[5] Finite presentation of the tame fundamental groups (2021) (preprint) | arXiv
[6] Actions algébriques de groupes arithmétiques, Torsors, étale homotopy and applications to rational points (London Mathematical Society Lecture Note Series), Volume 405, Cambridge University Press, 2013, pp. 231-249 | DOI | Zbl
[7] Revêtements étales et groupe fondamentale (SGA 1) (Alexander Grothendieck; Michèle Raynaud, eds.), Lecture Notes in Mathematics, 224, Springer, 1971 | Zbl
[8] Smallness of fundamental groups of arithmetic schemes, J. Number Theory, Volume 129 (2009) no. 11, pp. 2702-2712 | DOI | MR | Zbl
[9] Sur le groupe des classes d’un schéma arithmétique, Bull. Soc. Math. Fr., Volume 134 (2006) no. 3, pp. 395-415 | DOI | Zbl
[10] Algebraic Groups and Number Theory, Pure and Applied Mathematics, 139, Academic Press Inc., 1994 | MR | Zbl
[11] Linear algebraic groups with good reduction, Res. Math. Sci., Volume 7 (2020) no. 3, 28, 65 pages | MR | Zbl
[12] Propriétés de finitude du groupe fondamental, SGA 7 I (Lecture Notes in Mathematics), Volume 288, Springer, 1972, pp. 25-31 | MR | Zbl
[13] Galois cohomology, Springer, 1997 | Zbl
[14] Galois orbits and equidistribution of special subvarieties: towards the André–Oort conjecture, Ann. Math., Volume 180 (2014) no. 3, pp. 823-865 | DOI | Zbl
[15] Algebraic Groups and Their Birational Invariants, Translations of Mathematical Monographs, 179, American Mathematical Society, 1998 | MR
Cité par Sources :
Commentaires - Politique