Comptes Rendus
A three field stabilized finite element method for the Stokes equations
[Une méthode d'éléments finis stabilisée à trois champs pour les équations de Stokes]
Comptes Rendus. Mathématique, Volume 334 (2002) no. 7, pp. 603-608.

On propose dans ce travail, une formulation vitesse-tourbillon-pression pour le problème de Stokes bidimensionnel dans lequel on impose des conditions au bord non standard. On s'intèresse plus précisément aux cas où, sur certaines parties du bord, sont données la pression et la composante tangentielle de la vitesse ou bien le tourbillon et la composante normale de la vitesse. En partant d'une formulation mixte variationnelle le problème est résolu avec des hypothèses minimales sur la régularité. Dans cette formulation, les inconnues principales sont la pression et le tourbillon, tandis que la vitesse joue le rôle du multiplicateur. Nous présentons le problème discrétisé associé, pour lequel nous rajoutons un terme de stabilisation. Un résultat de convergence, décrivant le comportement de l'erreur d'approximation a priori, est démontré. Nous terminons par quelques résultats numériques.

We consider in this work the boundary value problem for Stokes equations on a two dimensional domain in cases where non-standard boundary conditions are given. We study the cases where pressure and normal or tangential components of the velocity are given in different parts of the boundary and solve the problem with a minimal regularity. We introduce the problem and its variational formulation which is a mixed one. The principal unknowns are the pressure and the vorticity, the multiplier is the velocity. We present the numerical discretization which needs some stabilization. We prove the convergence and the behavior of the a priori error estimates. Some numerical tests are also presented.

Reçu le :
Révisé le :
Publié le :
DOI : 10.1016/S1631-073X(02)02319-1

Mohamed Amara 1 ; Eliseo Chacón Vera 2 ; David Trujillo 1

1 IPRA-LMA, Université de Pau et des Pay de l'Adour, 64000 Pau, France
2 Departamento de ecuaciones diferenciales y analysis, Universidad de Sevilla, 41080 Sevilla, Spain
@article{CRMATH_2002__334_7_603_0,
     author = {Mohamed Amara and Eliseo Chac\'on Vera and David Trujillo},
     title = {A three field stabilized finite element method for the {Stokes} equations},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {603--608},
     publisher = {Elsevier},
     volume = {334},
     number = {7},
     year = {2002},
     doi = {10.1016/S1631-073X(02)02319-1},
     language = {en},
}
TY  - JOUR
AU  - Mohamed Amara
AU  - Eliseo Chacón Vera
AU  - David Trujillo
TI  - A three field stabilized finite element method for the Stokes equations
JO  - Comptes Rendus. Mathématique
PY  - 2002
SP  - 603
EP  - 608
VL  - 334
IS  - 7
PB  - Elsevier
DO  - 10.1016/S1631-073X(02)02319-1
LA  - en
ID  - CRMATH_2002__334_7_603_0
ER  - 
%0 Journal Article
%A Mohamed Amara
%A Eliseo Chacón Vera
%A David Trujillo
%T A three field stabilized finite element method for the Stokes equations
%J Comptes Rendus. Mathématique
%D 2002
%P 603-608
%V 334
%N 7
%I Elsevier
%R 10.1016/S1631-073X(02)02319-1
%G en
%F CRMATH_2002__334_7_603_0
Mohamed Amara; Eliseo Chacón Vera; David Trujillo. A three field stabilized finite element method for the Stokes equations. Comptes Rendus. Mathématique, Volume 334 (2002) no. 7, pp. 603-608. doi : 10.1016/S1631-073X(02)02319-1. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(02)02319-1/

[1] M. Amara; C. Bernardi Convergence of a finite element discretization of the Navier–Stokes equations in vorticity and stream function formulation, Math. Modelling Numer. Anal., Volume 33 (1999) no. 5, pp. 1033-1056

[2] M. Amara; F. El Dabaghi An optimal C0 finite element algorithm for the 2D biharmonic problem: Theoretical analysis and numerical results, Numer. Math., Volume 90 (2001) no. 1, pp. 19-46

[3] C. Conca; C. Pares; O. Pironneau; M. Thiriet Navier–Stokes equations with imposed pressure and velocity fluxes, Intern. J. Numer. Methods Fluids, Volume 20 (1995), pp. 267-287

[4] M. Costabel A remark on the regularity of solutions of Maxwell's equations on Lipschitz domains, Math. Methods Appl. Sci., Volume 12 (1990), pp. 365-368

[5] F. Dubois, M. Salaün, S. Salmon, Discrete harmonics for stream function – vorticity Stokes problem, Technical report 325/99, IAT/CNAM, 1999 and article to appear

[6] V. Girault; P.-A. Raviart Finite Element Methods for the Navier–Stokes Equations. Theory and Algorithms, Springer-Verlag, 1986

Cité par Sources :

Commentaires - Politique