[Estimations de stabilité pour résoudre le problème de Stokes avec des éléments finis non conformes]
Nous proposons d’analyser la discrétisation du problème de Stokes avec des éléments finis non conformes à la lumière de la T-coercivité. Tout d’abord, pour prouver la T-coercivité, nous exhibons une famille d’opérateurs et nous montrons que la constante de stabilité est égale à la constante de stabilité classique, à une constante près qui dépend de la constante de Babuška–Aziz. Par la suite, nous explicitons les constantes de stabilité par rapport au paramètre de régularité de forme pour l’ordre
We propose to analyse the discretization of the Stokes problem with nonconforming finite elements in light of the T-coercivity. First we exhibit a family of operators to prove T-coercivity and we show that the stability constant is equal to the classical one up to a constant which depends on the Babuška–Aziz constant. Then we explicit the stability constants with respect to the shape regularity parameter for order 1 in 2 or 3 dimensions, and order 2 in 2 dimensions. In this last case, we improve the result of the original Fortin–Soulie paper. Second, we illustrate the importance of using a divergence-free velocity reconstruction on some numerical experiments.
Révisé le :
Accepté le :
Publié le :
Erell Jamelot 1

@article{CRMATH_2025__363_G2_115_0, author = {Erell Jamelot}, title = {Stability estimates for solving {Stokes} problem with nonconforming finite elements}, journal = {Comptes Rendus. Math\'ematique}, pages = {115--137}, publisher = {Acad\'emie des sciences, Paris}, volume = {363}, year = {2025}, doi = {10.5802/crmath.707}, language = {en}, }
Erell Jamelot. Stability estimates for solving Stokes problem with nonconforming finite elements. Comptes Rendus. Mathématique, Volume 363 (2025), pp. 115-137. doi : 10.5802/crmath.707. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.707/
[1] Computable error bounds for nonconforming Fortin–Soulie finite element approximation of the Stokes problem, IMA J. Numer. Anal., Volume 32 (2011) no. 2, pp. 417-447 | DOI | MR | Zbl
[2] A nonconforming pressure-robust finite element method for the Stokes equations on anisotropic meshes, IMA J. Numer. Anal., Volume 42 (2022) no. 1, pp. 392-416 | DOI | MR | Zbl
[3] Crouzeix-Raviart type finite elements on anisotropic meshes, Numer. Math., Volume 89 (2001) no. 2, pp. 193-223 | DOI | MR | Zbl
[4] Gauss-Legendre elements: a stable, higher order non-conforming finite element family, Computing, Volume 79 (2007) no. 1, pp. 1-21 | DOI | MR | Zbl
[5] The
[6] Continuity properties of the inf-sup constant for the divergence, SIAM J. Math. Anal., Volume 48 (2016) no. 2, pp. 1250-1271 | DOI | MR | Zbl
[7] More pressure in the finite element discretization of the Stokes problem, ESAIM, Math. Model. Numer. Anal., Volume 34 (2000) no. 5, pp. 953-980 | DOI | Numdam | MR | Zbl
[8] Mixed finite element methods and applications, Springer Series in Computational Mathematics, 44, Springer, 2013, xiv+685 pages | DOI | MR
[9] Notes de cours sur les méthodes variationnelles pour l’analyse de problèmes non coercifs (2024) M.Sc. AMS lecture notes (ENSTA-IPP) | HAL
[10] Optimal and pressure independent
[11] Poincaré–Friedrichs inequalities for piecewise
[12] Two families of mixed finite elements for second order elliptic problems, Numer. Math., Volume 47 (1985) no. 2, pp. 217-235 | DOI | MR | Zbl
[13] Stabilized Crouzeix-Raviart element for the Darcy-Stokes problem, Numer. Methods Partial Differ. Equations, Volume 21 (2005) no. 5, pp. 986-997 | DOI | MR | Zbl
[14] Critical functions and inf-sup stability of Crouzeix-Raviart elements, Comput. Math. Appl., Volume 108 (2022), pp. 12-23 | DOI | MR | Zbl
[15] Crouzeix-Raviart triangular elements are inf-sup stable, Math. Comput., Volume 91 (2022) no. 337, pp. 2041-2057 | DOI | MR | Zbl
[16]
[17] T-coercivity: Application to the discretization of Helmhotz-like problems, Comput. Math. Appl., Volume 64 (2012) no. 1, pp. 22-24 | DOI | MR | Zbl
[18] Analysis of the Scott–Zhang interpolation in the fractional order Sobolev spaces, J. Numer. Math., Volume 21 (2013) no. 3, pp. 173-180 | MR | Zbl
[19] Explicit T-coercivity for the Stokes problem: a coercive finite element discretization (2025) (To appear in Comput. Math. Appl.) | HAL
[20] Domain decomposition methods for the diffusion equation with low-regularity solution, Comput. Math. Appl., Volume 74 (2017) no. 10, pp. 2369-2384 | DOI | MR | Zbl
[21] On the inequalities of Babuška-Aziz, Friedrichs and Horgan-Payne, Arch. Ration. Mech. Anal., Volume 217 (2015), pp. 873-898 | DOI | MR | Zbl
[22] Conforming and nonconforming finite element methods for solving the stationary Stokes equations, Rev. Franç. Autom. Inform. Rech. Opérat., R, Volume 7 (1973) no. 3, pp. 33-75 | Numdam | MR
[23] Error estimators for nonconforming finite element approximations of the Stokes problem, Math. Comput., Volume 64 (1995) no. 211, pp. 1017-1033 | DOI | MR | Zbl
[24] Fortin operator for Taylor-Hood element, Numer. Math., Volume 150 (2022) no. 2, pp. 671-689 | DOI | MR | Zbl
[25] Reliable a posteriori error control for nonconforming finite element approximation of Stokes flow, Math. Comput., Volume 74 (2005) no. 252, pp. 1599-1619 | DOI | MR | Zbl
[26] Finite elements I–Approximation and interpolation, Texts in Applied Mathematics, 72, Springer, 2021, xii+325 pages | DOI | MR
[27] Finite elements II–Galerkin approximation, elliptic and mixed PDEs, Texts in Applied Mathematics, 73, Springer, 2021, ix+492 pages | DOI | MR
[28] Low-order divergence-free approximations for the Stokes problem on Worsey–Farin and Powell–Sabin splits, Comput. Methods Appl. Mech. Eng., Volume 390 (2022), 114444, 21 pages | MR | Zbl
[29] A non-conforming piecewise quadratic finite element on triangles, Int. J. Numer. Methods Eng., Volume 19 (1983) no. 4, pp. 505-520 | DOI | MR | Zbl
[30] Rayleigh-Ritz approximation of the inf-sup constant for the divergence, Math. Comput., Volume 88 (2019) no. 315, pp. 73-89 | DOI | MR | Zbl
[31] A simple introduction to the mixed finite element method. Theory and applications, SpringerBriefs in Mathematics, Springer, 2014, xii+132 pages | DOI | MR
[32] Finite element methods for Navier-Stokes equations, Springer Series in Computational Mathematics, 5, Springer, 1986, x+374 pages | DOI | MR
[33] Non-Conforming Domain Decomposition for the Multigroup Neutron SPN Equation, Ph. D. Thesis, Université Paris-Saclay (France) (2018)
[34] Construction d’une base de fonctions
[35] Nonconforming mixed finite elements code to solve Stokes Problem,
[36] Fast non-overlapping Schwarz domain decomposition methods for solving the neutron diffusion equation, J. Comput. Phys., Volume 241 (2013), pp. 445-463 | DOI | MR | Zbl
[37] Stability of the
[38] On the Role of the Helmholtz-Decomposition in Mixed Methods for Incompressible Flows and a New Variational Crime, Comput. Methods Appl. Mech. Eng., Volume 268 (2014), pp. 782-800 | DOI | MR | Zbl
[39] A mixed finite element method for second order elliptic problems, Mathematical aspects of finite element methods (Lecture Notes in Mathematics), Volume 606, Springer (1977), pp. 292-315 | DOI | Zbl
[40] The inf-sup constant for
[41] The inf-sup constant for
[42] On the Inf-Sup Stabillity of Crouzeix-Raviart Stokes Elements in 3D, Math. Comput., Volume 92 (2023), pp. 1033-1059 | DOI | MR | Zbl
[43] Norm estimates for a maximal right inverse of the divergence operator in spaces of piecewise polynomials, RAIRO, Modélisation Math. Anal. Numér., Volume 19 (1985) no. 1, pp. 111-143 | DOI | Numdam | MR | Zbl
[44] Finite element interpolation of nonsmooth functions satisfying boundary conditions, Math. Comput., Volume 54 (1990), pp. 483-493 | DOI | MR | Zbl
[45] Error analysis of some finite element methods for the Stokes problem, Math. Comput., Volume 54 (1990), pp. 495-508 | DOI | MR | Zbl
[46] An introduction to Sobolev spaces and interpolation spaces, Lecture Notes of the Unione Matematica Italiana, 3, Springer, 2007, xxvi+218 pages | MR
[47] A numerical solution of the Navier-Stokes equations using the finite element technique, Comput. Fluids, Volume 1 (1973), pp. 73-100 | DOI | Zbl
[48] On the discrete Poincaré-Friedrichs inequlities for nonconforming approximations of the Sobolev space
[49] A new family of stable mixed finite elements for the 3D Stokes equations, Math. Comput., Volume 74 (2005), pp. 543-554 | DOI | MR | Zbl
Cité par Sources :
Commentaires - Politique