Comptes Rendus
Article de recherche - Analyse numérique
Stability estimates for solving Stokes problem with nonconforming finite elements
[Estimations de stabilité pour résoudre le problème de Stokes avec des éléments finis non conformes]
Comptes Rendus. Mathématique, Volume 363 (2025), pp. 115-137.

Nous proposons d’analyser la discrétisation du problème de Stokes avec des éléments finis non conformes à la lumière de la T-coercivité. Tout d’abord, pour prouver la T-coercivité, nous exhibons une famille d’opérateurs et nous montrons que la constante de stabilité est égale à la constante de stabilité classique, à une constante près qui dépend de la constante de Babuška–Aziz. Par la suite, nous explicitons les constantes de stabilité par rapport au paramètre de régularité de forme pour l’ordre 1 en dimension 2 ou 3, et l’ordre 2 en dimension 2. Dans ce dernier cas, nous améliorons le résultat de l’article original de Fortin–Soulie. Ensuite nous illustrons l’importance d’utiliser une méthode de projection conforme dans H(div) pour certaines expériences numériques.

We propose to analyse the discretization of the Stokes problem with nonconforming finite elements in light of the T-coercivity. First we exhibit a family of operators to prove T-coercivity and we show that the stability constant is equal to the classical one up to a constant which depends on the Babuška–Aziz constant. Then we explicit the stability constants with respect to the shape regularity parameter for order 1 in 2 or 3 dimensions, and order 2 in 2 dimensions. In this last case, we improve the result of the original Fortin–Soulie paper. Second, we illustrate the importance of using a divergence-free velocity reconstruction on some numerical experiments.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.707
Classification : 65N30, 35J57, 76D07

Erell Jamelot 1

1 Université Paris-Saclay, CEA, Service de Thermo-hydraulique et de Mécanique des Fluides, 91191 Gif-sur-Yvette, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2025__363_G2_115_0,
     author = {Erell Jamelot},
     title = {Stability estimates for solving {Stokes} problem with nonconforming finite elements},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {115--137},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {363},
     year = {2025},
     doi = {10.5802/crmath.707},
     language = {en},
}
TY  - JOUR
AU  - Erell Jamelot
TI  - Stability estimates for solving Stokes problem with nonconforming finite elements
JO  - Comptes Rendus. Mathématique
PY  - 2025
SP  - 115
EP  - 137
VL  - 363
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.707
LA  - en
ID  - CRMATH_2025__363_G2_115_0
ER  - 
%0 Journal Article
%A Erell Jamelot
%T Stability estimates for solving Stokes problem with nonconforming finite elements
%J Comptes Rendus. Mathématique
%D 2025
%P 115-137
%V 363
%I Académie des sciences, Paris
%R 10.5802/crmath.707
%G en
%F CRMATH_2025__363_G2_115_0
Erell Jamelot. Stability estimates for solving Stokes problem with nonconforming finite elements. Comptes Rendus. Mathématique, Volume 363 (2025), pp. 115-137. doi : 10.5802/crmath.707. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.707/

[1] Mark Ainsworth; Alejandro Allendes; Gabriel R. Barrenechea; Richard Rankin Computable error bounds for nonconforming Fortin–Soulie finite element approximation of the Stokes problem, IMA J. Numer. Anal., Volume 32 (2011) no. 2, pp. 417-447 | DOI | MR | Zbl

[2] Thomas Apel; Volker Kempf; Alexander Linke; Christian Merdon A nonconforming pressure-robust finite element method for the Stokes equations on anisotropic meshes, IMA J. Numer. Anal., Volume 42 (2022) no. 1, pp. 392-416 | DOI | MR | Zbl

[3] Thomas Apel; Serge Nicaise; Joachim Schöberl Crouzeix-Raviart type finite elements on anisotropic meshes, Numer. Math., Volume 89 (2001) no. 2, pp. 193-223 | DOI | MR | Zbl

[4] Ágnes Baran; Gisbert Stoyan Gauss-Legendre elements: a stable, higher order non-conforming finite element family, Computing, Volume 79 (2007) no. 1, pp. 1-21 | DOI | MR | Zbl

[5] Mathieu Barré; Patrick Ciarlet The T-coercivity approach for mixed problems, C. R., Math., Acad. Sci. Paris, Volume 362 (2024), pp. 1051-1088 | DOI | MR | Zbl

[6] Christine Bernardi; Martin Costabel; Monique Dauge; Vivette Girault Continuity properties of the inf-sup constant for the divergence, SIAM J. Math. Anal., Volume 48 (2016) no. 2, pp. 1250-1271 | DOI | MR | Zbl

[7] Christine Bernardi; Frédéric Hecht More pressure in the finite element discretization of the Stokes problem, ESAIM, Math. Model. Numer. Anal., Volume 34 (2000) no. 5, pp. 953-980 | DOI | Numdam | MR | Zbl

[8] Daniele Boffi; Franco Brezzi; Michel Fortin Mixed finite element methods and applications, Springer Series in Computational Mathematics, 44, Springer, 2013, xiv+685 pages | DOI | MR

[9] Anne-Sophie Bonnet-Ben Dhia; Patrick Ciarlet Notes de cours sur les méthodes variationnelles pour l’analyse de problèmes non coercifs (2024) M.Sc. AMS lecture notes (ENSTA-IPP) | HAL

[10] Christian Brennecke; Alexander Linke; Christian Merdon; Joachim Schöberl Optimal and pressure independent L2 velocity error estimates for a modified Crouzeix-Raviart Stokes element with BDM reconstructions, J. Comput. Math., Volume 33 (2015) no. 2, pp. 191-208 | DOI | MR

[11] Susanne Cecelia Brenner Poincaré–Friedrichs inequalities for piecewise H1 functions, SIAM J. Numer. Anal., Volume 41 (2003) no. 1, pp. 306-324 | DOI | MR | Zbl

[12] Franco Brezzi; Jim Douglas; Luisa Donatella Marini Two families of mixed finite elements for second order elliptic problems, Numer. Math., Volume 47 (1985) no. 2, pp. 217-235 | DOI | MR | Zbl

[13] Erik Burman; Peter Hansbo Stabilized Crouzeix-Raviart element for the Darcy-Stokes problem, Numer. Methods Partial Differ. Equations, Volume 21 (2005) no. 5, pp. 986-997 | DOI | MR | Zbl

[14] Carsten Carstensen; Stefan Sauter Critical functions and inf-sup stability of Crouzeix-Raviart elements, Comput. Math. Appl., Volume 108 (2022), pp. 12-23 | DOI | MR | Zbl

[15] Carsten Carstensen; Stefan Sauter Crouzeix-Raviart triangular elements are inf-sup stable, Math. Comput., Volume 91 (2022) no. 337, pp. 2041-2057 | DOI | MR | Zbl

[16] Lucas Chesnel; Patrick Ciarlet T-coercivity and continuous Galerkin methods: application to transmission problems with sign changing coefficients, Numer. Math., Volume 124 (2013), pp. 1-29 | DOI | MR | Zbl

[17] Patrick Ciarlet T-coercivity: Application to the discretization of Helmhotz-like problems, Comput. Math. Appl., Volume 64 (2012) no. 1, pp. 22-24 | DOI | MR | Zbl

[18] Patrick Ciarlet Analysis of the Scott–Zhang interpolation in the fractional order Sobolev spaces, J. Numer. Math., Volume 21 (2013) no. 3, pp. 173-180 | MR | Zbl

[19] Patrick Ciarlet; Erell Jamelot Explicit T-coercivity for the Stokes problem: a coercive finite element discretization (2025) (To appear in Comput. Math. Appl.) | HAL

[20] Patrick Ciarlet; Erell Jamelot; Félix D. Kpadonou Domain decomposition methods for the diffusion equation with low-regularity solution, Comput. Math. Appl., Volume 74 (2017) no. 10, pp. 2369-2384 | DOI | MR | Zbl

[21] Martin Costabel; Monique Dauge On the inequalities of Babuška-Aziz, Friedrichs and Horgan-Payne, Arch. Ration. Mech. Anal., Volume 217 (2015), pp. 873-898 | DOI | MR | Zbl

[22] Michel Crouzeix; Pierre-Arnaud Raviart Conforming and nonconforming finite element methods for solving the stationary Stokes equations, Rev. Franç. Autom. Inform. Rech. Opérat., R, Volume 7 (1973) no. 3, pp. 33-75 | Numdam | MR

[23] Enzo A. Dari; Ricardo G. Durán; Claudio Padra Error estimators for nonconforming finite element approximations of the Stokes problem, Math. Comput., Volume 64 (1995) no. 211, pp. 1017-1033 | DOI | MR | Zbl

[24] Lars Diening; Johannes Storn; Tabea Tscherpel Fortin operator for Taylor-Hood element, Numer. Math., Volume 150 (2022) no. 2, pp. 671-689 | DOI | MR | Zbl

[25] Willy Dörfler; Mark Ainsworth Reliable a posteriori error control for nonconforming finite element approximation of Stokes flow, Math. Comput., Volume 74 (2005) no. 252, pp. 1599-1619 | DOI | MR | Zbl

[26] Alexandre Ern; Jean-Luc Guermond Finite elements I–Approximation and interpolation, Texts in Applied Mathematics, 72, Springer, 2021, xii+325 pages | DOI | MR

[27] Alexandre Ern; Jean-Luc Guermond Finite elements II–Galerkin approximation, elliptic and mixed PDEs, Texts in Applied Mathematics, 73, Springer, 2021, ix+492 pages | DOI | MR

[28] Maurice S. Fabien; Johnny Guzmán; Michael Neilan; Ahmed Zytoon Low-order divergence-free approximations for the Stokes problem on Worsey–Farin and Powell–Sabin splits, Comput. Methods Appl. Mech. Eng., Volume 390 (2022), 114444, 21 pages | MR | Zbl

[29] Michel Fortin; M. Soulie A non-conforming piecewise quadratic finite element on triangles, Int. J. Numer. Methods Eng., Volume 19 (1983) no. 4, pp. 505-520 | DOI | MR | Zbl

[30] Dietmar Gallistl Rayleigh-Ritz approximation of the inf-sup constant for the divergence, Math. Comput., Volume 88 (2019) no. 315, pp. 73-89 | DOI | MR | Zbl

[31] Gabriel N. Gatica A simple introduction to the mixed finite element method. Theory and applications, SpringerBriefs in Mathematics, Springer, 2014, xii+132 pages | DOI | MR

[32] Vivette Girault; Pierre-Arnaud Raviart Finite element methods for Navier-Stokes equations, Springer Series in Computational Mathematics, 5, Springer, 1986, x+374 pages | DOI | MR

[33] Léandre Giret Non-Conforming Domain Decomposition for the Multigroup Neutron SPN Equation, Ph. D. Thesis, Université Paris-Saclay (France) (2018)

[34] Frédéric Hecht Construction d’une base de fonctions P1 non conforme à divergence nulle dans 3, RAIRO, Anal. Numér., Volume 15 (1981) no. 2, pp. 119-150 | DOI | MR | Zbl

[35] Erell Jamelot Nonconforming mixed finite elements code to solve Stokes Problem, 2D, k=1,2 (2022) https://github.com/cea-trust-platform/stokes_ncfem

[36] Erell Jamelot; Patrick Ciarlet Fast non-overlapping Schwarz domain decomposition methods for solving the neutron diffusion equation, J. Comput. Phys., Volume 241 (2013), pp. 445-463 | DOI | MR | Zbl

[37] Erell Jamelot; Patrick Ciarlet; Stefan Sauter Stability of the Pnc1-(P0+P1) element (2025) (To appear in the ENUMATH 2023 proceedings) | HAL

[38] Alexander Linke On the Role of the Helmholtz-Decomposition in Mixed Methods for Incompressible Flows and a New Variational Crime, Comput. Methods Appl. Mech. Eng., Volume 268 (2014), pp. 782-800 | DOI | MR | Zbl

[39] Pierre-Arnaud Raviart; Jean-Marie Thomas A mixed finite element method for second order elliptic problems, Mathematical aspects of finite element methods (Lecture Notes in Mathematics), Volume 606, Springer (1977), pp. 292-315 | DOI | Zbl

[40] Stefan Sauter The inf-sup constant for hp-Crouzeix-Raviart triangular elements (2022) | arXiv

[41] Stefan Sauter The inf-sup constant for hp-Crouzeix-Raviart triangular elements, Comput. Math. Appl., Volume 149 (2023), pp. 49-70 | DOI | MR | Zbl

[42] Stefan Sauter; Céline Torres On the Inf-Sup Stabillity of Crouzeix-Raviart Stokes Elements in 3D, Math. Comput., Volume 92 (2023), pp. 1033-1059 | DOI | MR | Zbl

[43] Larkin Ridgway Scott; Michael Steenstrup Vogelius Norm estimates for a maximal right inverse of the divergence operator in spaces of piecewise polynomials, RAIRO, Modélisation Math. Anal. Numér., Volume 19 (1985) no. 1, pp. 111-143 | DOI | Numdam | MR | Zbl

[44] Larkin Ridgway Scott; Shangyou Zhang Finite element interpolation of nonsmooth functions satisfying boundary conditions, Math. Comput., Volume 54 (1990), pp. 483-493 | DOI | MR | Zbl

[45] Rolf Stenberg Error analysis of some finite element methods for the Stokes problem, Math. Comput., Volume 54 (1990), pp. 495-508 | DOI | MR | Zbl

[46] Luc Tartar An introduction to Sobolev spaces and interpolation spaces, Lecture Notes of the Unione Matematica Italiana, 3, Springer, 2007, xxvi+218 pages | MR

[47] Cedric Taylor; P. Hood A numerical solution of the Navier-Stokes equations using the finite element technique, Comput. Fluids, Volume 1 (1973), pp. 73-100 | DOI | Zbl

[48] Martin Vohralík On the discrete Poincaré-Friedrichs inequlities for nonconforming approximations of the Sobolev space H1, Numer. Funct. Anal. Optim., Volume 26 (2005), pp. 925-952 | DOI | MR | Zbl

[49] Shangyou Zhang A new family of stable mixed finite elements for the 3D Stokes equations, Math. Comput., Volume 74 (2005), pp. 543-554 | DOI | MR | Zbl

Cité par Sources :

Commentaires - Politique