Comptes Rendus
Article de recherche - Théorie des nombres
Some lacunarity properties of partial quotients of real numbers
[Quelques propriétés de lacunarité des quotients partiels de nombres réels]
Comptes Rendus. Mathématique, Volume 362 (2024), pp. 1089-1095.

Nous considérons des propriétés de lacunarité de la suite des quotients partiels du développement en fraction continue de nombres réels. Nous calculons la dimension de Hausdorff d’ensembles de points dont la suite des quotients partiels satisfait à différentes conditions de lacunarité.

We consider lacunarity properties of sequence of partial quotients for real numbers in their continued fraction expansions. Hausdorff dimension of the sets of points with different lacunarity conditions on their partial quotients are calculated.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.594
Classification : 11K50, 28A78
Keywords: Hausdorff dimension, Continued fraction expansion.
Mot clés : Dimension de Hausdorff, développement en fraction continue.

Xuan Zhao 1 ; Zhenliang Zhang 2

1 National Education Examinations Authority, 100084 Beijing, China
2 School of Mathematical Sciences, Chongqing Normal University, Chongqing, 401331, P. R. China
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2024__362_G10_1089_0,
     author = {Xuan Zhao and Zhenliang Zhang},
     title = {Some lacunarity properties of partial quotients of real numbers},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1089--1095},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {362},
     year = {2024},
     doi = {10.5802/crmath.594},
     language = {en},
}
TY  - JOUR
AU  - Xuan Zhao
AU  - Zhenliang Zhang
TI  - Some lacunarity properties of partial quotients of real numbers
JO  - Comptes Rendus. Mathématique
PY  - 2024
SP  - 1089
EP  - 1095
VL  - 362
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.594
LA  - en
ID  - CRMATH_2024__362_G10_1089_0
ER  - 
%0 Journal Article
%A Xuan Zhao
%A Zhenliang Zhang
%T Some lacunarity properties of partial quotients of real numbers
%J Comptes Rendus. Mathématique
%D 2024
%P 1089-1095
%V 362
%I Académie des sciences, Paris
%R 10.5802/crmath.594
%G en
%F CRMATH_2024__362_G10_1089_0
Xuan Zhao; Zhenliang Zhang. Some lacunarity properties of partial quotients of real numbers. Comptes Rendus. Mathématique, Volume 362 (2024), pp. 1089-1095. doi : 10.5802/crmath.594. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.594/

[1] Ayreena Bakhtawar; Philip Bos; Mumtaz Hussain Hausdorff dimension of an exceptional set in the theory of continued fractions, Nonlinearity, Volume 33 (2020) no. 6, pp. 2615-2639 | DOI | MR | Zbl

[2] Ayreena Bakhtawar; Philip Bos; Mumtaz Hussain The sets of Dirichlet non-improvable numbers versus well-approximable numbers, Ergodic Theory Dyn. Syst., Volume 40 (2020) no. 12, pp. 3217-3235 | DOI | MR | Zbl

[3] Philip Bos; Mumtaz Hussain; David Simmons The generalised Hausdorff measure of sets of Dirichlet non-improvable numbers, Proc. Am. Math. Soc., Volume 151 (2023) no. 5, pp. 1823-1838 | DOI | MR | Zbl

[4] Kenneth Falconer Fractal geometry, John Wiley & Sons, 1990, xxii+288 pages (Mathematical foundations and applications) | MR

[5] Ai Hua Fan; Ling Min Liao; Bao Wei Wang; Jun Wu On Khintchine exponents and Lyapunov exponents of continued fractions, Ergodic Theory Dyn. Syst., Volume 29 (2009) no. 1, pp. 73-109 | DOI | MR | Zbl

[6] Irving J. Good The fractional dimensional theory of continued fractions, Proc. Camb. Philos. Soc., Volume 37 (1941), pp. 199-228 | DOI | MR | Zbl

[7] Mumtaz Hussain; Dmitry Kleinbock; Nick Wadleigh; Bao Wei Wang Hausdorff measure of sets of Dirichlet non-improvable numbers, Mathematika, Volume 64 (2018) no. 2, pp. 502-518 | DOI | MR | Zbl

[8] Mumtaz Hussain; Bixuan Li; Nikita Shulga Hausdorff dimension analysis of sets with the product of consecutive vs single partial quotients in continued fractions, Discrete Contin. Dyn. Syst., Volume 44 (2024) no. 1, pp. 154-181 | DOI | MR | Zbl

[9] Mumtaz Hussain; Nikita Shulga Metrical properties of exponentially growing partial quotients (2023) (https://arxiv.org/abs/2309.10529)

[10] Ling Ling Huang; Jun Wu; Jian Xu Metric properties of the product of consecutive partial quotients in continued fractions, Isr. J. Math., Volume 238 (2020) no. 2, pp. 901-943 | DOI | MR | Zbl

[11] Marius Iosifescu; Cor Kraaikamp Metrical theory of continued fractions, Mathematics and its Applications, 547, Kluwer Academic Publishers, 2002, xx+383 pages | DOI | MR | Zbl

[12] V. Jarník A contribution to the metric theory of Diophantine approximations, Prace Mat.-Fiz., Volume 36 (1929), pp. 91-106 | Zbl

[13] Aleksandr Ya. Khinchin Continued fractions, The University of Chicago Press, 1964, xi+95 pages | Zbl

[14] Dmitry Kleinbock; Nick Wadleigh A zero-one law for improvements to Dirichlet’s Theorem, Proc. Am. Math. Soc., Volume 146 (2018) no. 5, pp. 1833-1844 | DOI | MR | Zbl

[15] Bixuan Li; Bao Wei Wang; Jian Xu Hausdorff dimension of Dirichlet non-improvable set versus well-approximable set, Ergodic Theory Dyn. Syst., Volume 43 (2023) no. 8, pp. 2707-2731 | DOI | MR | Zbl

[16] R. Daniel Mauldin; Mariusz Urbański Conformal iterated function systems with applications to the geometry of continued fractions, Trans. Am. Math. Soc., Volume 351 (1999) no. 12, pp. 4995-5025 | DOI | MR | Zbl

[17] Bao Wei Wang; Jun Wu Hausdorff dimension of certain sets arising in continued fraction expansions, Adv. Math., Volume 218 (2008) no. 5, pp. 1319-1339 | DOI | MR | Zbl

[18] Tomasz Łuczak On the fractional dimension of sets of continued fractions, Mathematika, Volume 44 (1997) no. 1, pp. 50-53 | DOI | MR | Zbl

Cité par Sources :

Commentaires - Politique