[Quelques propriétés de lacunarité des quotients partiels de nombres réels]
Nous considérons des propriétés de lacunarité de la suite des quotients partiels du développement en fraction continue de nombres réels. Nous calculons la dimension de Hausdorff d’ensembles de points dont la suite des quotients partiels satisfait à différentes conditions de lacunarité.
We consider lacunarity properties of sequence of partial quotients for real numbers in their continued fraction expansions. Hausdorff dimension of the sets of points with different lacunarity conditions on their partial quotients are calculated.
Révisé le :
Accepté le :
Publié le :
Keywords: Hausdorff dimension, Continued fraction expansion.
Mot clés : Dimension de Hausdorff, développement en fraction continue.
Xuan Zhao 1 ; Zhenliang Zhang 2
@article{CRMATH_2024__362_G10_1089_0, author = {Xuan Zhao and Zhenliang Zhang}, title = {Some lacunarity properties of partial quotients of real numbers}, journal = {Comptes Rendus. Math\'ematique}, pages = {1089--1095}, publisher = {Acad\'emie des sciences, Paris}, volume = {362}, year = {2024}, doi = {10.5802/crmath.594}, language = {en}, }
Xuan Zhao; Zhenliang Zhang. Some lacunarity properties of partial quotients of real numbers. Comptes Rendus. Mathématique, Volume 362 (2024), pp. 1089-1095. doi : 10.5802/crmath.594. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.594/
[1] Hausdorff dimension of an exceptional set in the theory of continued fractions, Nonlinearity, Volume 33 (2020) no. 6, pp. 2615-2639 | DOI | MR | Zbl
[2] The sets of Dirichlet non-improvable numbers versus well-approximable numbers, Ergodic Theory Dyn. Syst., Volume 40 (2020) no. 12, pp. 3217-3235 | DOI | MR | Zbl
[3] The generalised Hausdorff measure of sets of Dirichlet non-improvable numbers, Proc. Am. Math. Soc., Volume 151 (2023) no. 5, pp. 1823-1838 | DOI | MR | Zbl
[4] Fractal geometry, John Wiley & Sons, 1990, xxii+288 pages (Mathematical foundations and applications) | MR
[5] On Khintchine exponents and Lyapunov exponents of continued fractions, Ergodic Theory Dyn. Syst., Volume 29 (2009) no. 1, pp. 73-109 | DOI | MR | Zbl
[6] The fractional dimensional theory of continued fractions, Proc. Camb. Philos. Soc., Volume 37 (1941), pp. 199-228 | DOI | MR | Zbl
[7] Hausdorff measure of sets of Dirichlet non-improvable numbers, Mathematika, Volume 64 (2018) no. 2, pp. 502-518 | DOI | MR | Zbl
[8] Hausdorff dimension analysis of sets with the product of consecutive vs single partial quotients in continued fractions, Discrete Contin. Dyn. Syst., Volume 44 (2024) no. 1, pp. 154-181 | DOI | MR | Zbl
[9] Metrical properties of exponentially growing partial quotients (2023) (https://arxiv.org/abs/2309.10529)
[10] Metric properties of the product of consecutive partial quotients in continued fractions, Isr. J. Math., Volume 238 (2020) no. 2, pp. 901-943 | DOI | MR | Zbl
[11] Metrical theory of continued fractions, Mathematics and its Applications, 547, Kluwer Academic Publishers, 2002, xx+383 pages | DOI | MR | Zbl
[12] A contribution to the metric theory of Diophantine approximations, Prace Mat.-Fiz., Volume 36 (1929), pp. 91-106 | Zbl
[13] Continued fractions, The University of Chicago Press, 1964, xi+95 pages | Zbl
[14] A zero-one law for improvements to Dirichlet’s Theorem, Proc. Am. Math. Soc., Volume 146 (2018) no. 5, pp. 1833-1844 | DOI | MR | Zbl
[15] Hausdorff dimension of Dirichlet non-improvable set versus well-approximable set, Ergodic Theory Dyn. Syst., Volume 43 (2023) no. 8, pp. 2707-2731 | DOI | MR | Zbl
[16] Conformal iterated function systems with applications to the geometry of continued fractions, Trans. Am. Math. Soc., Volume 351 (1999) no. 12, pp. 4995-5025 | DOI | MR | Zbl
[17] Hausdorff dimension of certain sets arising in continued fraction expansions, Adv. Math., Volume 218 (2008) no. 5, pp. 1319-1339 | DOI | MR | Zbl
[18] On the fractional dimension of sets of continued fractions, Mathematika, Volume 44 (1997) no. 1, pp. 50-53 | DOI | MR | Zbl
Cité par Sources :
Commentaires - Politique