Comptes Rendus
Théorie « élémentaire » des nombres
The relative growth rate for the digits in Lüroth expansions
Comptes Rendus. Mathématique, Volume 358 (2020) no. 5, pp. 557-562.

In this note, the rate of growth of digits in the Lüroth expansion of an irrational number is studied relative to the rate of approximation of the number by its convergents. The Hausdorff dimension of exceptional sets of points with a given relative growth rate is established.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.71
Classification : 11K55, 28A80
Mots-clés : Lüroth expansion, Hausdorff dimension, relative growth rate

Xiaoyan Tan 1 ; Zhenliang Zhang 2

1 School of Mathematical Sciences, Henan Institute of Science and Technology, Xinxiang, 453003, P. R. China
2 School of Mathematical Sciences, Chongqing Normal University, Chongqing, 401131, P. R.China
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2020__358_5_557_0,
     author = {Xiaoyan Tan and Zhenliang Zhang},
     title = {The relative growth rate for the digits in {L\"uroth} expansions},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {557--562},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {358},
     number = {5},
     year = {2020},
     doi = {10.5802/crmath.71},
     language = {en},
}
TY  - JOUR
AU  - Xiaoyan Tan
AU  - Zhenliang Zhang
TI  - The relative growth rate for the digits in Lüroth expansions
JO  - Comptes Rendus. Mathématique
PY  - 2020
SP  - 557
EP  - 562
VL  - 358
IS  - 5
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.71
LA  - en
ID  - CRMATH_2020__358_5_557_0
ER  - 
%0 Journal Article
%A Xiaoyan Tan
%A Zhenliang Zhang
%T The relative growth rate for the digits in Lüroth expansions
%J Comptes Rendus. Mathématique
%D 2020
%P 557-562
%V 358
%N 5
%I Académie des sciences, Paris
%R 10.5802/crmath.71
%G en
%F CRMATH_2020__358_5_557_0
Xiaoyan Tan; Zhenliang Zhang. The relative growth rate for the digits in Lüroth expansions. Comptes Rendus. Mathématique, Volume 358 (2020) no. 5, pp. 557-562. doi : 10.5802/crmath.71. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.71/

[1] Luis Barreira; Godofredo Iommi Frequency of digits in the Lüroth expansion, J. Number Theory, Volume 129 (2009) no. 6, pp. 1479-1490 | DOI | Zbl

[2] Chunyun Cao; Jun Wu; Zhenliang Zhang The efficiency of approximating real numbers by Lüroth expansion, Czech. Math. J., Volume 63 (2013) no. 2, pp. 497-513 | Zbl

[3] Kenneth J. Falconer Fractal geometry. Mathematical foundations and applications, John Wiley & Sons, 2014 | Zbl

[4] Janos Galambos Reprentations of real numbers by infinite series, Lecture Notes in Mathematics, 502, Springer, 1976 | Zbl

[5] Andrew Hass The relative growth rate for partial quotients, New York J. Math., Volume 14 (2008), pp. 139-143 | MR | Zbl

[6] Jinjun Li; Min Wu; Xianfeng Yang On the longest block in Lüroth expansion, J. Math. Anal. Appl., Volume 457 (2018) no. 1, pp. 522-532 | Zbl

[7] Lingmin Liao; Michal Rams Big Birkhoff sums in d-decaying Gauss like iterated function systems (2019) (https://arxiv.org/abs/1905.02547)

[8] Jacob Lüroth Ueber eine eindeutige entwickelung von zahlen in eine unendliche reihe, Math. Ann., Volume 21 (1883) no. 2, pp. 411-423 | DOI | MR

[9] Luming Shen; Kui Fang The fractional dimensional theory in Lüroth expansion, Czech. Math. J., Volume 61 (2011) no. 3, pp. 795-807 | DOI | Zbl

[10] Luming Shen; Yiying Yu; Yuxin Zhou A note on the largest digits in Lüroth expansion, Int. J. Number Theory, Volume 10 (2014) no. 4, pp. 1015-1023 | DOI | Zbl

[11] Kunkun Song; Lulu Fang; Jihua Ma Level sets of partial maximal digits for Lüroth expansion, Int. J. Number Theory, Volume 13 (2017) no. 10, pp. 2777-2790 | DOI | Zbl

[12] Yu Sun; Jun Wu A dimensional result in continued fractions, Int. J. Number Theory, Volume 10 (2014) no. 4, pp. 849-857 | DOI | MR | Zbl

[13] Bo Tan; Qinglong Zhou The relative growth rate for partial quotients in continued fractions, J. Math. Anal. Appl., Volume 478 (2019) no. 1, pp. 229-235 | DOI | MR | Zbl

[14] Xiaoyan Tan; Kaijan He A note on the relative growth rate of the maximal digit in Lüroth expansions, Fractals (2020) (“online first”, https://doi.org/10.1142/S0218348X20501169) | DOI

  • Mumtaz Hussain; Nikita Shulga; Zhenliang Zhang Hausdorff dimension for the set with exponentially growing partial quotients in their Lüroth expansion, Discrete and Continuous Dynamical Systems, Volume 44 (2024) no. 6, pp. 1747-1767 | DOI:10.3934/dcds.2024008 | Zbl:1550.11084
  • Zhenliang Zhang; Xu Liao; Xiaoyan Tan The convergence exponent and the well approximated sets for Lüroth expansion, Journal of Mathematical Analysis and Applications, Volume 535 (2024) no. 1, p. 15 (Id/No 128217) | DOI:10.1016/j.jmaa.2024.128217 | Zbl:1544.11061
  • Xiaoyan Tan; Jia Liu; Zhenliang Zhang Relative convergence speed of Lüroth expansions and Hausdorff dimension, International Journal of Number Theory, Volume 18 (2022) no. 5, pp. 977-997 | DOI:10.1142/s1793042122500518 | Zbl:1494.11068
  • Rafael Alcaraz Barrera; Gerardo González Robert Chaotic sets and Hausdorff dimension for Lüroth expansions, Journal of Mathematical Analysis and Applications, Volume 514 (2022) no. 2, p. 29 (Id/No 126324) | DOI:10.1016/j.jmaa.2022.126324 | Zbl:1494.11066
  • Qing-Long Zhou On the distribution of the digits in Lüroth expansions, Lithuanian Mathematical Journal, Volume 62 (2022) no. 1, pp. 123-132 | DOI:10.1007/s10986-022-09553-0 | Zbl:1492.11121
  • Jayadev S. Athreya; Krishna B. Athreya Extrema of Lüroth digits and a zeta function limit relation, Integers, Volume 21 (2021), p. paper | Zbl:1496.11104

Cité par 6 documents. Sources : zbMATH

Commentaires - Politique