Comptes Rendus
Research article - Complex analysis and geometry, Algebraic geometry
An Exponential Rarefaction Result for Sub-Gaussian Real Algebraic Maximal Curves
Comptes Rendus. Mathématique, Volume 362 (2024), pp. 779-788.

We prove that maximal real algebraic curves associated with sub-Gaussian random real holomorphic sections of a smoothly curved ample line bundle are exponentially rare. This generalizes the result of Gayet and Welschinger [13] proved in the Gaussian case for positively curved real holomorphic line bundles.

Nous démontrons que les courbes algébriques réelles maximales associées aux sections holomorphes réelles sous-Gaussiennes d’un faisceau de lignes amples à courbure lisse sont exponentiellement raréfiées. Cela généralise le résultat de Gayet et Welschinger [13] ont prouvé dans le cas Gaussien des faisceaux de lignes holomorphes réels à courbure positive.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/crmath.596

Turgay Bayraktar 1; Emel Karaca 2

1 Faculty of Engineering and Natural Sciences, Sabancı University, İstanbul, 34956 Turkey
2 Polatlı Faculty of Science and Arts, Ankara Hacı Bayram Veli University, Ankara, 06900 Turkey
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{CRMATH_2024__362_G7_779_0,
     author = {Turgay Bayraktar and Emel Karaca},
     title = {An {Exponential} {Rarefaction} {Result} for {Sub-Gaussian} {Real} {Algebraic} {Maximal} {Curves}},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {779--788},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {362},
     year = {2024},
     doi = {10.5802/crmath.596},
     language = {en},
}
TY  - JOUR
AU  - Turgay Bayraktar
AU  - Emel Karaca
TI  - An Exponential Rarefaction Result for Sub-Gaussian Real Algebraic Maximal Curves
JO  - Comptes Rendus. Mathématique
PY  - 2024
SP  - 779
EP  - 788
VL  - 362
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.596
LA  - en
ID  - CRMATH_2024__362_G7_779_0
ER  - 
%0 Journal Article
%A Turgay Bayraktar
%A Emel Karaca
%T An Exponential Rarefaction Result for Sub-Gaussian Real Algebraic Maximal Curves
%J Comptes Rendus. Mathématique
%D 2024
%P 779-788
%V 362
%I Académie des sciences, Paris
%R 10.5802/crmath.596
%G en
%F CRMATH_2024__362_G7_779_0
Turgay Bayraktar; Emel Karaca. An Exponential Rarefaction Result for Sub-Gaussian Real Algebraic Maximal Curves. Comptes Rendus. Mathématique, Volume 362 (2024), pp. 779-788. doi : 10.5802/crmath.596. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.596/

[1] M. Ancona Exponential rarefaction of maximal real algebraic hypersurfaces (2020) (2009.11951v1)

[2] T. Bayraktar Expected number of real roots for random linear combinations of orthogonal polynomials associated with radial weights, Potential Anal., Volume 48 (2018), pp. 459-471 | DOI | Zbl

[3] T. Bayraktar Mass equidistribution for random polynomials, Potential Anal., Volume 53 (2020), pp. 1403-1421 | DOI | Zbl

[4] R. J. Berman Bergman kernels and equilibrium measures for line bundles over projective manifolds, Am. J. Math., Volume 131 (2009) no. 5, pp. 1485-1524 | DOI | Zbl

[5] E. Bedford; M. Lyubich; J. Smillie Polynomial diffeomorphisms of C2. IV. The measure of maximal entropy and laminar currents, Invent. Math., Volume 112 (1993), pp. 77-125 | DOI | Zbl

[6] J.-P. Demailly Complex analytic and differential geometry (https://www.ime.usp.br/~cordaro/wp-content/uploads/2022/03/Jean-Pierre-Demailly-Complex-Analytic-and-Differential-Geometry-1.pdf)

[7] J.-P. Demailly Courants positifs extrêmaux et conjecture de Hodge, Invent. Math., Volume 69 (1982) no. 3, pp. 347-374 | DOI | Zbl

[8] J.-P. Demailly Singular Hermitian metrics on positive line bundles, Complex algebraic varieties (Bayreuth, 1990) (Lecture Notes in Mathematics), Volume 1507, Springer, 1990, pp. 87-104 | DOI | Zbl

[9] D. N. Diatta; A. Lerario Low-degree approximation of random polynomials, Found. Comput. Math., Volume 22 (2022), pp. 77-97 | DOI | Zbl

[10] R. Dujardin Laminar currents in P 2 , Math. Ann., Volume 325 (2003), pp. 745-765 | DOI | Zbl

[11] R. Dujardin Structure properties of laminar currents on P 2 , J. Geom. Anal., Volume 15 (2005) no. 1, pp. 25-47 | DOI | Zbl

[12] J. E. Fornæss; N. Sibony Oka’s inequality for currents and applications, Math. Ann., Volume 301 (1995) no. 3, pp. 399-419 | DOI | Zbl

[13] P. Griffiths; J. Harris Principles of algebraic geometry, Pure and Applied Mathematics, John Wiley & Sons, 1978 | Zbl

[14] D. Gayet; J.-Y. Welschinger Exponential rarefaction of real curves with many components, Publ. Math., Inst. Hautes Étud. Sci., Volume 113 (2011), pp. 69-96 | DOI | Numdam | Zbl

[15] D. L. Hanson; F. T. Wright A bound on tail probabilities for quadratic forms in independent random variables, Ann. Math. Stat., Volume 42 (1971), pp. 1079-1083 | DOI | Zbl

[16] M. Rudelson; R. Vershynin Hanson–Wright inequality and sub-Gaussian concentration, Electron. Commun. Probab., Volume 82 (2013) no. 9, 82 | DOI | Zbl

[17] B. Shiffman; S. Zelditch Distribution of zeros of random and quantum chaotic sections of positive line bundles, Commun. Math. Phys., Volume 200 (1999) no. 3, pp. 661-683 | DOI | Zbl

[18] R. Vershynin Introduction to the non-asymptotic analysis of random matrices, Compressed sensing: Theory and Applications, Cambridge University Press, 2012, pp. 210-268 | DOI

[19] G. Wilson Hilbert’s sixteenth problem, Topology, Volume 17 (1978), pp. 53-73 | DOI | Zbl

[20] S. Zelditch Quantum ergodic sequences and equilibrium measures, Constr. Approx., Volume 47 (2018) no. 1, pp. 89-118 | DOI | Zbl

Cited by Sources:

Comments - Policy