We prove that maximal real algebraic curves associated with sub-Gaussian random real holomorphic sections of a smoothly curved ample line bundle are exponentially rare. This generalizes the result of Gayet and Welschinger [13] proved in the Gaussian case for positively curved real holomorphic line bundles.
Nous démontrons que les courbes algébriques réelles maximales associées aux sections holomorphes réelles sous-Gaussiennes d’un faisceau de lignes amples à courbure lisse sont exponentiellement raréfiées. Cela généralise le résultat de Gayet et Welschinger [13] ont prouvé dans le cas Gaussien des faisceaux de lignes holomorphes réels à courbure positive.
Revised:
Accepted:
Published online:
Turgay Bayraktar 1; Emel Karaca 2
@article{CRMATH_2024__362_G7_779_0, author = {Turgay Bayraktar and Emel Karaca}, title = {An {Exponential} {Rarefaction} {Result} for {Sub-Gaussian} {Real} {Algebraic} {Maximal} {Curves}}, journal = {Comptes Rendus. Math\'ematique}, pages = {779--788}, publisher = {Acad\'emie des sciences, Paris}, volume = {362}, year = {2024}, doi = {10.5802/crmath.596}, language = {en}, }
TY - JOUR AU - Turgay Bayraktar AU - Emel Karaca TI - An Exponential Rarefaction Result for Sub-Gaussian Real Algebraic Maximal Curves JO - Comptes Rendus. Mathématique PY - 2024 SP - 779 EP - 788 VL - 362 PB - Académie des sciences, Paris DO - 10.5802/crmath.596 LA - en ID - CRMATH_2024__362_G7_779_0 ER -
Turgay Bayraktar; Emel Karaca. An Exponential Rarefaction Result for Sub-Gaussian Real Algebraic Maximal Curves. Comptes Rendus. Mathématique, Volume 362 (2024), pp. 779-788. doi : 10.5802/crmath.596. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.596/
[1] Exponential rarefaction of maximal real algebraic hypersurfaces (2020) (2009.11951v1)
[2] Expected number of real roots for random linear combinations of orthogonal polynomials associated with radial weights, Potential Anal., Volume 48 (2018), pp. 459-471 | DOI | Zbl
[3] Mass equidistribution for random polynomials, Potential Anal., Volume 53 (2020), pp. 1403-1421 | DOI | Zbl
[4] Bergman kernels and equilibrium measures for line bundles over projective manifolds, Am. J. Math., Volume 131 (2009) no. 5, pp. 1485-1524 | DOI | Zbl
[5] Polynomial diffeomorphisms of C2. IV. The measure of maximal entropy and laminar currents, Invent. Math., Volume 112 (1993), pp. 77-125 | DOI | Zbl
[6] Complex analytic and differential geometry (https://www.ime.usp.br/~cordaro/wp-content/uploads/2022/03/Jean-Pierre-Demailly-Complex-Analytic-and-Differential-Geometry-1.pdf)
[7] Courants positifs extrêmaux et conjecture de Hodge, Invent. Math., Volume 69 (1982) no. 3, pp. 347-374 | DOI | Zbl
[8] Singular Hermitian metrics on positive line bundles, Complex algebraic varieties (Bayreuth, 1990) (Lecture Notes in Mathematics), Volume 1507, Springer, 1990, pp. 87-104 | DOI | Zbl
[9] Low-degree approximation of random polynomials, Found. Comput. Math., Volume 22 (2022), pp. 77-97 | DOI | Zbl
[10] Laminar currents in , Math. Ann., Volume 325 (2003), pp. 745-765 | DOI | Zbl
[11] Structure properties of laminar currents on , J. Geom. Anal., Volume 15 (2005) no. 1, pp. 25-47 | DOI | Zbl
[12] Oka’s inequality for currents and applications, Math. Ann., Volume 301 (1995) no. 3, pp. 399-419 | DOI | Zbl
[13] Principles of algebraic geometry, Pure and Applied Mathematics, John Wiley & Sons, 1978 | Zbl
[14] Exponential rarefaction of real curves with many components, Publ. Math., Inst. Hautes Étud. Sci., Volume 113 (2011), pp. 69-96 | DOI | Numdam | Zbl
[15] A bound on tail probabilities for quadratic forms in independent random variables, Ann. Math. Stat., Volume 42 (1971), pp. 1079-1083 | DOI | Zbl
[16] Hanson–Wright inequality and sub-Gaussian concentration, Electron. Commun. Probab., Volume 82 (2013) no. 9, 82 | DOI | Zbl
[17] Distribution of zeros of random and quantum chaotic sections of positive line bundles, Commun. Math. Phys., Volume 200 (1999) no. 3, pp. 661-683 | DOI | Zbl
[18] Introduction to the non-asymptotic analysis of random matrices, Compressed sensing: Theory and Applications, Cambridge University Press, 2012, pp. 210-268 | DOI
[19] Hilbert’s sixteenth problem, Topology, Volume 17 (1978), pp. 53-73 | DOI | Zbl
[20] Quantum ergodic sequences and equilibrium measures, Constr. Approx., Volume 47 (2018) no. 1, pp. 89-118 | DOI | Zbl
Cited by Sources:
Comments - Policy