In this paper we consider the problem of estimation of oscillatory integrals with Mittag-Leffler functions in two variables. The generalisation is that we replace the exponential function with the Mittag-Leffler-type function, to study oscillatory type integrals.
Dans cet article, nous considérons le problème de l’estimation des intégrales oscillatoires avec les fonctions de Mittag-Leffler à deux variables. La généralisation est que l’on remplace la fonction exponentielle par la fonction de type Mittag-Leffler, pour étudier les intégrales de type oscillatoire.
Revised:
Accepted:
Published online:
Isroil A. Ikromov 1, 2; Michael Ruzhansky 3, 4; Akbar R. Safarov 5
@article{CRMATH_2024__362_G7_789_0, author = {Isroil A. Ikromov and Michael Ruzhansky and Akbar R. Safarov}, title = {Oscillatory integrals for {Mittag-Leffler} functions with two variables}, journal = {Comptes Rendus. Math\'ematique}, pages = {789--798}, publisher = {Acad\'emie des sciences, Paris}, volume = {362}, year = {2024}, doi = {10.5802/crmath.597}, language = {en}, }
TY - JOUR AU - Isroil A. Ikromov AU - Michael Ruzhansky AU - Akbar R. Safarov TI - Oscillatory integrals for Mittag-Leffler functions with two variables JO - Comptes Rendus. Mathématique PY - 2024 SP - 789 EP - 798 VL - 362 PB - Académie des sciences, Paris DO - 10.5802/crmath.597 LA - en ID - CRMATH_2024__362_G7_789_0 ER -
%0 Journal Article %A Isroil A. Ikromov %A Michael Ruzhansky %A Akbar R. Safarov %T Oscillatory integrals for Mittag-Leffler functions with two variables %J Comptes Rendus. Mathématique %D 2024 %P 789-798 %V 362 %I Académie des sciences, Paris %R 10.5802/crmath.597 %G en %F CRMATH_2024__362_G7_789_0
Isroil A. Ikromov; Michael Ruzhansky; Akbar R. Safarov. Oscillatory integrals for Mittag-Leffler functions with two variables. Comptes Rendus. Mathématique, Volume 362 (2024), pp. 789-798. doi : 10.5802/crmath.597. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.597/
[1] À propos d’une note de M. Pierre Humbert, C. R. Acad. Sci. Paris, Volume 236 (1953), pp. 2031-2032 | Zbl
[2] Singularities of Differentiable Maps. Volume I: The classification of critical points, caustics and wave fronts, Monographs in Mathematics, 82, Birkhäuser, Boston-Basel-Stuttgart, 1985 | DOI | Zbl
[3] Theory of multiple trigonometric sums, Nauka, Moska, 1987 | Zbl
[4] On Abelian summation of the eneralized integral transform, Akad. Nauk Armjan. SSR Izvestija, fiz-mat. estest. techn. nauki, Volume 7 (1954), pp. 1-26
[5] On integral representation of functions continuous on given rays (generalization of the Fourier integrals), Izv. Akad. Nauk SSSR, Ser. Mat., Volume 18 (1954), pp. 427-448
[6] On the asymtotic expansion of a function of Mittag-Leffler type, Akad. Nauk Armjan. SSR Doklady, Volume 19 (1954), pp. 65-72
[7] Mittag–Leffler functions, related topics and applications, Springer Monographs in Mathematics, Springer, 2014 | DOI | Zbl
[8] Oscillatory integral decay, sublevel set growth and the Newton polyhedron, Math. Ann., Volume 346 (2010) no. 4, pp. 857-890 | DOI | Zbl
[9] Uniform oscillatory integral estimates for convex phases via sublevel set estimates (2021) (2111.05395v1)
[10] Sur la fonction de Mittag-Leffler et quelques-unes de ses généralisations, Bull. Sci. Math., Volume 77 (1953), pp. 180-185 | Zbl
[11] Quelques résultats relatifs à la fonction de Mittag-Leffler, C. R. Acad. Sci. Paris, Volume 236 (1953), pp. 1467-1468 | Zbl
[12] Estimates for maximal functions associated with hypersurfaces in and related problems of harmonic analysis, Acta Math., Volume 204 (2010) no. 2, pp. 151-271 | DOI | Zbl
[13] Invariant estimates of two-dimensional trigonometric integrals, Math. USSR, Sb., Volume 67 (1990) no. 2, pp. 473-488 | DOI | Zbl
[14] On adapted coordinate systems, Trans. Am. Math. Soc., Volume 363 (2011) no. 6, pp. 2821-2848 | DOI | Zbl
[15] Fourier Restriction for Hypersurfaces in Three Dimensions and Newton Polyhedra, Annals of Mathematics Studies, 194, Princeton University Press, 2016 | DOI | Zbl
[16] On the convergence exponent of the special integral of the Tarry problem for a quadratic polynomial, Zh. Sib. Fed. Univ. Mat. Fiz., Volume 16 (2023) no. 4, pp. 488-497
[17] Uniform estimates of oscillating integrals in , Dokl. Akad. Nauk SSSR, Volume 254 (1980) no. 1, pp. 28-31
[18] Sur l’intégrale de Laplace–Abel, C. R. Acad. Sci. Paris, Volume 135 (1902), pp. 937-939 | Zbl
[19] Sur la nouvelle fonction , C. R. Acad. Sci. Paris, Volume 137 (1903), pp. 554-558 | Zbl
[20] Une généralization de l’intégrale de Laplace–Abel, C. R. Acad. Sci. Paris, Volume 136 (1903), pp. 537-539 | Zbl
[21] Sopra la funzione , Rom. Acc. L. Rend. (5), Volume 13 (1904) no. 1, pp. 3-5 | Zbl
[22] Fractional Differensial Equations, Mathematics in Science and Engineering, 198, Academic Press Inc., 1999 | Zbl
[23] The Newton polyhedron and oscillatory integral operator, Acta Math., Volume 179 (1997) no. 1, pp. 105-152 | DOI | Zbl
[24] Uniform estimates for oscillatory integrals with homogeneous polynomial phases of degree 4, Anal. Math. Phys., Volume 12 (2022) no. 6, 130 | DOI | Zbl
[25] Multidimensional van der Corput-type estimates involving Mittag-Leffler functions, Fract. Calc. Appl. Anal., Volume 23 (2021) no. 6, pp. 1663-1677 | DOI | Zbl
[26] Van der Corput lemmas for Mittag-Leffler functions. II. directions, Bull. Sci. Math., Volume 171 (2021) no. 3, 103016 | DOI | Zbl
[27] Pointwise van der Corput Lemma for Functions of Several Variables, Funct. Anal. Appl., Volume 43 (2009) no. 1, pp. 75-77 | DOI | Zbl
[28] Multidimensional decay in the van der Corput Lemma, Stud. Math., Volume 208 (2012) no. 1, pp. 1-9 | DOI | Zbl
[29] On invariant estimates for oscillatory integrals with polynomial phase, J. Sib. Fed. Univ., Math. Phys., Volume 9 (2016) no. 1, pp. 102-107 | DOI | Zbl
[30] Invariant estimates of two-dimensional oscillatory integrals, Math. Notes, Volume 104 (2018) no. 2, pp. 293-302 | DOI | Zbl
[31] On a problem of restriction of Fourier transform on a hypersurface, Russ. Math., Volume 63 (2019) no. 4, pp. 57-63 | DOI | Zbl
[32] On the -bound for trigonometric integrals, Anal. Math., Volume 45 (2019), pp. 153-176 | DOI | Zbl
[33] Estimates for Mittag-Leffler Functions with Smooth Phase Depending on Two Variables, J. Sib. Fed. Univ., Math. Phys., Volume 15 (2022) no. 4, pp. 459-466 | Zbl
[34] Newton polyhedra and estimation of oscillating integrals, Funct. Anal. Appl., Volume 10 (1976), pp. 175-196 | DOI | Zbl
[35] Zur Methode der stationären Phase. I. Einfache Integrale, Compos. Math., Volume 1 (1934), pp. 15-38 | Zbl
Cited by Sources:
Comments - Policy