In this paper, we give a simple condition on the initial state of the granular media equation which ensures that the limit as the time goes to infinity is the unique steady state with positive center of mass. To do so, we use functional inequalities, Laplace method and McKean–Vlasov diffusion (which corresponds to the probabilistic interpretation of the granular media equation).
Dans ce papier, nous donnons une condition simple portant sur l’état initial de l’équation des milieux granulaires qui assure que la limite en temps long est l’unique probabilité invariante avec un centre de masse strictement positif. Pour ce faire, nous utilisons des inégalités fonctionnelles, la méthode de Laplace et la diffusion de McKean–Vlasov (qui correspond à l’interprétation probabiliste de l’équation des milieux granulaires).
Accepted:
Published online:
Julian Tugaut 1
@article{CRMATH_2024__362_G7_775_0, author = {Julian Tugaut}, title = {Granular media equation with double-well external landscape: limiting steady state}, journal = {Comptes Rendus. Math\'ematique}, pages = {775--778}, publisher = {Acad\'emie des sciences, Paris}, volume = {362}, year = {2024}, doi = {10.5802/crmath.595}, language = {en}, }
Julian Tugaut. Granular media equation with double-well external landscape: limiting steady state. Comptes Rendus. Mathématique, Volume 362 (2024), pp. 775-778. doi : 10.5802/crmath.595. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.595/
[1] A simple proof of the Poincaré inequality for a large class of probability measures including the log-concave case, Electron. Commun. Probab., Volume 13 (2008), pp. 60-66 | DOI | MR | Zbl
[2] Convergence to equilibrium in Wasserstein distance for Fokker–Planck equations, J. Funct. Anal., Volume 263 (2012) no. 8, pp. 2430-2457 | DOI | MR | Zbl
[3] Large deviations and a Kramers’ type law for self-stabilizing diffusions, Ann. Appl. Probab., Volume 18 (2008) no. 4, pp. 1379-1423 | DOI | MR | Zbl
[4] Non-uniqueness of stationary measures for self-stabilizing processes, Stochastic Processes Appl., Volume 120 (2010) no. 7, pp. 1215-1246 | DOI | MR | Zbl
[5] A class of Markov processes associated with nonlinear parabolic equations, Proc. Natl. Acad. Sci. USA, Volume 56 (1966), pp. 1907-1911 | DOI | MR | Zbl
[6] Convergence to the equilibria for self-stabilizing processes in double-well landscape, Ann. Probab., Volume 41 (2013) no. 3A, pp. 1427-1460 | DOI | MR | Zbl
[7] Phase transitions of McKean–Vlasov processes in double-wells landscape, Stochastics, Volume 86 (2014) no. 2, pp. 257-284 | DOI | MR | Zbl
Cited by Sources:
Comments - Policy