Comptes Rendus
Research article - Partial differential equations, Probability theory
Granular media equation with double-well external landscape: limiting steady state
Comptes Rendus. Mathématique, Volume 362 (2024), pp. 775-778.

In this paper, we give a simple condition on the initial state of the granular media equation which ensures that the limit as the time goes to infinity is the unique steady state with positive center of mass. To do so, we use functional inequalities, Laplace method and McKean–Vlasov diffusion (which corresponds to the probabilistic interpretation of the granular media equation).

Dans ce papier, nous donnons une condition simple portant sur l’état initial de l’équation des milieux granulaires qui assure que la limite en temps long est l’unique probabilité invariante avec un centre de masse strictement positif. Pour ce faire, nous utilisons des inégalités fonctionnelles, la méthode de Laplace et la diffusion de McKean–Vlasov (qui correspond à l’interprétation probabiliste de l’équation des milieux granulaires).

Received:
Accepted:
Published online:
DOI: 10.5802/crmath.595
Classification: 35K55, 60J60, 60G10, 39B72

Julian Tugaut 1

1 Université Jean Monnet, CNRS UMR 5208, Institut Camille Jordan, Maison de l’Université, 10 rue Tréfilerie, CS 82301, 42023 Saint-Étienne Cedex 2, France
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{CRMATH_2024__362_G7_775_0,
     author = {Julian Tugaut},
     title = {Granular media equation with double-well external landscape: limiting steady state},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {775--778},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {362},
     year = {2024},
     doi = {10.5802/crmath.595},
     language = {en},
}
TY  - JOUR
AU  - Julian Tugaut
TI  - Granular media equation with double-well external landscape: limiting steady state
JO  - Comptes Rendus. Mathématique
PY  - 2024
SP  - 775
EP  - 778
VL  - 362
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.595
LA  - en
ID  - CRMATH_2024__362_G7_775_0
ER  - 
%0 Journal Article
%A Julian Tugaut
%T Granular media equation with double-well external landscape: limiting steady state
%J Comptes Rendus. Mathématique
%D 2024
%P 775-778
%V 362
%I Académie des sciences, Paris
%R 10.5802/crmath.595
%G en
%F CRMATH_2024__362_G7_775_0
Julian Tugaut. Granular media equation with double-well external landscape: limiting steady state. Comptes Rendus. Mathématique, Volume 362 (2024), pp. 775-778. doi : 10.5802/crmath.595. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.595/

[1] D. Bakry; F. Barthe; P. Cattiaux; A. Guillin A simple proof of the Poincaré inequality for a large class of probability measures including the log-concave case, Electron. Commun. Probab., Volume 13 (2008), pp. 60-66 | DOI | MR | Zbl

[2] F. Bolley; I. Gentil; A. Guillin Convergence to equilibrium in Wasserstein distance for Fokker–Planck equations, J. Funct. Anal., Volume 263 (2012) no. 8, pp. 2430-2457 | DOI | MR | Zbl

[3] S. Herrmann; P. Imkeller; D. Peithmann Large deviations and a Kramers’ type law for self-stabilizing diffusions, Ann. Appl. Probab., Volume 18 (2008) no. 4, pp. 1379-1423 | DOI | MR | Zbl

[4] S. Herrmann; J. Tugaut Non-uniqueness of stationary measures for self-stabilizing processes, Stochastic Processes Appl., Volume 120 (2010) no. 7, pp. 1215-1246 | DOI | MR | Zbl

[5] H. P. Jr. McKean A class of Markov processes associated with nonlinear parabolic equations, Proc. Natl. Acad. Sci. USA, Volume 56 (1966), pp. 1907-1911 | DOI | MR | Zbl

[6] J. Tugaut Convergence to the equilibria for self-stabilizing processes in double-well landscape, Ann. Probab., Volume 41 (2013) no. 3A, pp. 1427-1460 | DOI | MR | Zbl

[7] J. Tugaut Phase transitions of McKean–Vlasov processes in double-wells landscape, Stochastics, Volume 86 (2014) no. 2, pp. 257-284 | DOI | MR | Zbl

Cited by Sources:

Comments - Policy