[La méthode des caractéristiques-Galerkin duale]
La méthode Dual Characteristic-Galerkin (DCGM) est conservative, précise et expérimentalement positive. Nous prouvons la convergence et la stabilité
The Dual Characteristic-Galerkin method (DCGM) is conservative, precise and experimentally positive. We present the method and prove convergence and
Accepté le :
Accepté après révision le :
Publié le :
DOI : 10.5802/crmath.598
Keywords: Partial differential equations, convection-diffusion, numerical method, finite element method
Mots-clés : Équations aux dérivées partielles, convection-diffusion, schémas numériques, éléments finis
Frédéric Hecht 1 ; Olivier Pironneau 1

@article{CRMATH_2024__362_G10_1109_0, author = {Fr\'ed\'eric Hecht and Olivier Pironneau}, title = {The {Dual} {Characteristic-Galerkin} {Method}}, journal = {Comptes Rendus. Math\'ematique}, pages = {1109--1119}, publisher = {Acad\'emie des sciences, Paris}, volume = {362}, year = {2024}, doi = {10.5802/crmath.598}, zbl = {07939446}, language = {en}, }
Frédéric Hecht; Olivier Pironneau. The Dual Characteristic-Galerkin Method. Comptes Rendus. Mathématique, Volume 362 (2024), pp. 1109-1119. doi : 10.5802/crmath.598. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.598/
[1] A finite element method for Navier–Stokes equations, Numerical Methods for Non-Linear Problems, Volume 1, Pineridge Press (1980), pp. 709-720
[2] On a conservative upwind finite element scheme for convective diffusion equations, RAIRO, Anal. Numér., Volume 15 (1981) no. 1, pp. 3-25 | DOI | Numdam | MR | Zbl
[3] Finite element methods (Part 1), Handbook of Numerical Analysis, 2, North-Holland, 1991 | Zbl
[4] Discontinuous Galerkin methods for Friedrichs’ systems. I: General theory, SIAM J. Numer. Anal., Volume 44 (2006) no. 2, pp. 753-778 | DOI | MR | Zbl
[5] New development in freefem++, J. Numer. Math., Volume 20 (2012) no. 3-4, pp. 251-265 | DOI | MR | Zbl
[6] A closed-form solution for options with stochastic volatility with applications to bond and currency options, Rev. Financ. Stud., Volume 6 (1993) no. 2, pp. 327-343 | DOI | MR | Zbl
[7] The finite element method. Linear static and dynamic finite element analysis, Prentice Hall, 1987, xxviii+803 pages | MR | Zbl
[8] Arakawa’s method is a finite-element method, J. Comput. Phys., Volume 16 (1974), pp. 383-390 | DOI | MR | Zbl
[9] Finite element methods for linear hyperbolic problems, Comput. Methods Appl. Mech. Eng., Volume 45 (1984), pp. 285-312 | DOI | MR | Zbl
[10] Analysis of laminar flow over a backward facing step. A GAMM-Workshop (held on January 18-19, 1983, at Bièvres, France), Notes Numer. Fluid Mech., 9, Springer, 1984 | Zbl
[11] On the transport-diffusion algorithm and its applications to the Navier–Stokes equations, Numer. Math., Volume 38 (1982) no. 3, pp. 309-332 | DOI | MR | Zbl
[12] Computational geometry, Texts and Monographs in Computer Science, Springer, 1985, xii+390 pages (An introduction) | DOI | MR | Zbl
[13] Stability and convergence of a Galerkin-characteristics finite element scheme of lumped mass type, Int. J. Numer. Methods Fluids, Volume 64 (2010) no. 10-12, pp. 1240-1253 | DOI | MR | Zbl
[14] Convergence and nonlinear stability of the Lagrange–Galerkin method for the Navier–Stokes equations, Numer. Math., Volume 53 (1988) no. 4, pp. 459-483 | DOI | MR | Zbl
Cité par Sources :
Commentaires - Politique