We prove that every non-zero finite dimensional unitary representation of contains a non-zero -invariant vector. As a consequence, there is no sequence of finite-dimensional representations of that gives rise to an embedding of its reduced -algebra into an ultraproduct of matrix algebras.
Nous montrons que toute représentation unitaire de dimension finie non nulle de a un vecteur -invariant non nul. Il n’existe donc pas de suite de représentations de dimension finie de qui permettent de réaliser sa -algèbre réduite dans un ultraproduit d’algèbres de matrices.
Revised:
Accepted:
Published online:
DOI: 10.5802/crmath.617
Keywords: Special linear groups, Finite dimensionnal unitary representations, Purely MF groups, MF $C^*$-algebra
Mots-clés : Groupes spéciaux linéaires, représentations unitaires de dimension finie, groupes purement MF, $C^*$-algèbres MF
Michael Magee 1, 2; Mikael de la Salle 3, 2

@article{CRMATH_2024__362_G8_903_0, author = {Michael Magee and Mikael de la Salle}, title = {SL$_{4}(\textbf{Z})$ is not purely matricial field}, journal = {Comptes Rendus. Math\'ematique}, pages = {903--910}, publisher = {Acad\'emie des sciences, Paris}, volume = {362}, year = {2024}, doi = {10.5802/crmath.617}, zbl = {07929052}, language = {en}, }
Michael Magee; Mikael de la Salle. SL$_{4}(\textbf{Z})$ is not purely matricial field. Comptes Rendus. Mathématique, Volume 362 (2024), pp. 903-910. doi : 10.5802/crmath.617. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.617/
[2] Operator-algebraic superridigity for , , Invent. Math., Volume 169 (2007) no. 2, pp. 401-425 | DOI | MR | Zbl
[3] Generalized inductive limits of finite-dimensional -algebras, Math. Ann., Volume 307 (1997) no. 3, pp. 343-380 | DOI | MR | Zbl
[4] Solution of the congruence subgroup problem for and , Publ. Math., Inst. Hautes Étud. Sci., Volume 33 (1967), pp. 59-137 | DOI | MR | Zbl
[5] -algebras and finite-dimensional approximations, Graduate Studies in Mathematics, 88, American Mathematical Society, 2008, xvi+509 pages | DOI | MR | Zbl
[6] Representations of , Algebra and Applications, 13, Springer, 2011, xxii+186 pages | DOI | MR | Zbl
[7] Near optimal spectral gaps for hyperbolic surfaces, Ann. Math., Volume 198 (2023) no. 2, pp. 791-824 | DOI | MR | Zbl
[8] A new application of random matrices: is not a group, Ann. Math., Volume 162 (2005) no. 2, pp. 711-775 | DOI | MR | Zbl
[9] Ordinary and modular characters of , J. Algebra, Volume 72 (1981) no. 1, pp. 8-16 | DOI | MR | Zbl
[10] Strongly convergent unitary representations of limit groups (2023) (with Appendix by Will Hide and Michael Magee, https://arxiv.org/abs/2210.08953)
[11] Strongly convergent unitary representations of right-angled Artin groups, 2023 (https://arxiv.org/abs/2308.00863)
[12] Finite dimensional approximations of certain amalgamated free products of groups, 2023 (https://arxiv.org/abs/2306.02498)
[13] The character tables for , , , , Can. J. Math., Volume 25 (1973), pp. 486-494 | DOI | MR | Zbl
[14] Around quasidiagonal operators, Integral Equations Oper. Theory, Volume 17 (1993) no. 1, pp. 137-149 | DOI | MR | Zbl
Cited by Sources:
Comments - Policy