[Estimées de Strichartz pour les équations qui décrivent les fluides géophysiques à l’aide de la théorie de la restriction de Fourier]
Nous prouvons des estimées de Strichartz pour les semi-groupes associés aux fluides géophysiques non visqueux stratifiés et/ou en rotation en utilisant la théorie de restriction de Fourier. Nous prouvons de nouveaux résultats pour les fluides stratifiés en rotation, et retrouvons des résultats de Koh, Lee, Takada, 2014 pour des fluides en rotation uniquement, et de Lee, Takada, 2017 pour des fluides stratifiés uniquement. Nos estimées de restriction sont obtenues par la méthode de découpage en tranches (Nicola 2009), qui repose sur le théorème bien connu de Tomas–Stein pour les sphères en dimension 2. A notre connaissance, une telle méthode n’a jamais été utilisée dans ce cadre. De plus, lorsque le fluide est stratifié, notre approche donne des estimées optimales, montrant que la méthode de découpage capture toute la courbure disponible des surfaces étudiées.
We prove Strichartz estimates for the semigroups associated to stratified and/or rotating inviscid geophysical fluids using Fourier restriction theory. We prove new results for rotating stratified fluids, and recover results from Koh, Lee, Takada, 2014 for rotation only, and from Lee, Takada, 2017 for stratification only. Our restriction estimates are obtained by the slicing method (Nicola 2009), which relies on the well-known Tomas–Stein theorem for 2-dimensional spheres. To our knowledge, such a method has never been used in this setting. Moreover, when the fluid is stratified, our approach yields sharp estimates, showing that the slicing method captures all the available curvature of the surfaces of interest.
Révisé le :
Accepté le :
Publié le :
Keywords: Geophysical fluids, Fourier restriction theorems, Strichartz estimates
Mot clés : Fluides géophysiques, théorèmes de restriction de Fourier, estimées de Strichartz
Corentin Gentil 1 ; Côme Tabary 1
@article{CRMATH_2024__362_G10_1155_0, author = {Corentin Gentil and C\^ome Tabary}, title = {Strichartz estimates for geophysical fluid equations using {Fourier} restriction theory}, journal = {Comptes Rendus. Math\'ematique}, pages = {1155--1181}, publisher = {Acad\'emie des sciences, Paris}, volume = {362}, year = {2024}, doi = {10.5802/crmath.618}, language = {en}, }
TY - JOUR AU - Corentin Gentil AU - Côme Tabary TI - Strichartz estimates for geophysical fluid equations using Fourier restriction theory JO - Comptes Rendus. Mathématique PY - 2024 SP - 1155 EP - 1181 VL - 362 PB - Académie des sciences, Paris DO - 10.5802/crmath.618 LA - en ID - CRMATH_2024__362_G10_1155_0 ER -
Corentin Gentil; Côme Tabary. Strichartz estimates for geophysical fluid equations using Fourier restriction theory. Comptes Rendus. Mathématique, Volume 362 (2024), pp. 1155-1181. doi : 10.5802/crmath.618. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.618/
[1] Strichartz estimates and Fourier restriction theorems on the Heisenberg group, J. Fourier Anal. Appl., Volume 27 (2021) no. 2, 21, 41 pages | DOI | MR | Zbl
[2] Fourier analysis and nonlinear partial differential equations, Grundlehren der Mathematischen Wissenschaften, 343, Springer, 2011, xvi+523 pages | DOI | MR | Zbl
[3] Regularity and integrability of D Euler and Navier–Stokes equations for rotating fluids, Asymptotic Anal., Volume 15 (1997) no. 2, pp. 103-150 | DOI | MR | Zbl
[4] Global regularity of 3D rotating Navier-Stokes equations for resonant domains, Indiana Univ. Math. J., Volume 48 (1999) no. 3, pp. 1133-1176 | DOI | MR | Zbl
[5] Anisotropy and dispersion in rotating fluids, Nonlinear partial differential equations and their applications. Collège de France Seminar, Vol. XIV (Paris, 1997/1998) (Studies in Mathematics and its Applications), Volume 31, North-Holland, 2002, pp. 171-192 | DOI | MR | Zbl
[6] Mathematical geophysics. An introduction to rotating fluids and the Navier–Stokes equations, Oxford Lecture Series in Mathematics and its Applications, 32, Clarendon Press, 2006, xii+250 pages | DOI | MR | Zbl
[7] Global well-posedness and asymptotics for a geophysical fluid system, Commun. Partial Differ. Equations, Volume 29 (2004) no. 11-12, pp. 1919-1940 | DOI | MR | Zbl
[8] À propos d’un problème de pénalisation de type antisymétrique, J. Math. Pures Appl., Volume 76 (1997) no. 9, pp. 739-755 | DOI | MR | Zbl
[9] Slow convergence to vortex patches in quasigeostrophic balance, Arch. Ration. Mech. Anal., Volume 171 (2004) no. 3, pp. 417-449 | DOI | MR | Zbl
[10] Examples of dispersive effects in non-viscous rotating fluids, J. Math. Pures Appl., Volume 84 (2005) no. 3, pp. 331-356 | DOI | MR | Zbl
[11] Generalized Strichartz inequalities for the wave equation, J. Funct. Anal., Volume 133 (1995) no. 1, pp. 50-68 | DOI | MR | Zbl
[12] Global solutions for the incompressible rotating stably stratified fluids, Math. Nachr., Volume 290 (2017) no. 4, pp. 613-631 | DOI | MR | Zbl
[13] On nonlinear Schrödinger equations, Ann. Inst. Henri Poincaré, Phys. Théor., Volume 46 (1987) no. 1, pp. 113-129 | Numdam | MR | Zbl
[14] On the nonstationary Navier–Stokes system, Rend. Semin. Mat. Univ. Padova, Volume 32 (1962), pp. 243-260 | Numdam | MR | Zbl
[15] Strichartz estimates for the Euler equations in the rotational framework, J. Differ. Equations, Volume 256 (2014) no. 2, pp. 707-744 | DOI | MR | Zbl
[16] Endpoint Strichartz estimates, Am. J. Math., Volume 120 (1998) no. 5, pp. 955-980 | DOI | MR | Zbl
[17] Sur le mouvement d’un liquide visqueux emplissant l’espace, Acta Math., Volume 63 (1934) no. 1, pp. 193-248 | DOI | MR | Zbl
[18] Fourier transforms of surface-carried measures and differentiability of surface averages, Bull. Am. Math. Soc., Volume 69 (1963), pp. 766-770 | DOI | MR | Zbl
[19] Dispersive estimates for the stably stratified Boussinesq equations, Indiana Univ. Math. J., Volume 66 (2017) no. 6, pp. 2037-2070 | DOI | MR | Zbl
[20] Slicing surfaces and the Fourier restriction conjecture, Proc. Edinb. Math. Soc., II. Ser., Volume 52 (2009) no. 2, pp. 515-527 | DOI | MR | Zbl
[21] Geophysical fluid dynamics, Springer, 1987, 710 pages | DOI | Zbl
[22] Some problems in harmonic analysis, Harmonic analysis in Euclidean spaces (Proc. Sympos. Pure Math., Williams Coll., Williamstown, Mass., 1978), Part 1 (Proceedings of Symposia in Pure Mathematics), Volume XXXV, Part 1, American Mathematical Society, 1979, pp. 3-20 | MR | Zbl
[23] Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations, Duke Math. J., Volume 44 (1977) no. 3, pp. 705-714 | DOI | MR | Zbl
[24] Strongly stratified limit for the 3D inviscid Boussinesq equations, Arch. Ration. Mech. Anal., Volume 232 (2019) no. 3, pp. 1475-1503 | DOI | MR | Zbl
[25] Some recent progress on the restriction conjecture, Fourier analysis and convexity (Applied and Numerical Harmonic Analysis), Birkhäuser, 2004, pp. 217-243 | DOI | MR | Zbl
[26] A restriction theorem for the Fourier transform, Bull. Am. Math. Soc., Volume 81 (1975), pp. 477-478 | DOI | MR | Zbl
[27] Convergence to stratified flow for an inviscid 3D Boussinesq system, Commun. Math. Sci., Volume 16 (2018) no. 6, pp. 1713-1728 | DOI | MR | Zbl
Cité par Sources :
Commentaires - Politique