Comptes Rendus
Article de recherche - Équations aux dérivées partielles
Strichartz estimates for geophysical fluid equations using Fourier restriction theory
[Estimées de Strichartz pour les équations qui décrivent les fluides géophysiques à l’aide de la théorie de la restriction de Fourier]
Comptes Rendus. Mathématique, Volume 362 (2024), pp. 1155-1181.

Nous prouvons des estimées de Strichartz pour les semi-groupes associés aux fluides géophysiques non visqueux stratifiés et/ou en rotation en utilisant la théorie de restriction de Fourier. Nous prouvons de nouveaux résultats pour les fluides stratifiés en rotation, et retrouvons des résultats de Koh, Lee, Takada, 2014 pour des fluides en rotation uniquement, et de Lee, Takada, 2017 pour des fluides stratifiés uniquement. Nos estimées de restriction sont obtenues par la méthode de découpage en tranches (Nicola 2009), qui repose sur le théorème bien connu de Tomas–Stein pour les sphères en dimension 2. A notre connaissance, une telle méthode n’a jamais été utilisée dans ce cadre. De plus, lorsque le fluide est stratifié, notre approche donne des estimées optimales, montrant que la méthode de découpage capture toute la courbure disponible des surfaces étudiées.

We prove Strichartz estimates for the semigroups associated to stratified and/or rotating inviscid geophysical fluids using Fourier restriction theory. We prove new results for rotating stratified fluids, and recover results from Koh, Lee, Takada, 2014 for rotation only, and from Lee, Takada, 2017 for stratification only. Our restriction estimates are obtained by the slicing method (Nicola 2009), which relies on the well-known Tomas–Stein theorem for 2-dimensional spheres. To our knowledge, such a method has never been used in this setting. Moreover, when the fluid is stratified, our approach yields sharp estimates, showing that the slicing method captures all the available curvature of the surfaces of interest.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.618
Classification : 35Q86
Keywords: Geophysical fluids, Fourier restriction theorems, Strichartz estimates
Mot clés : Fluides géophysiques, théorèmes de restriction de Fourier, estimées de Strichartz

Corentin Gentil 1 ; Côme Tabary 1

1 Département de Mathématiques et Applications, ENS-PSL, 45 rue d’Ulm 75005 Paris, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2024__362_G10_1155_0,
     author = {Corentin Gentil and C\^ome Tabary},
     title = {Strichartz estimates for geophysical fluid equations using {Fourier} restriction theory},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1155--1181},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {362},
     year = {2024},
     doi = {10.5802/crmath.618},
     language = {en},
}
TY  - JOUR
AU  - Corentin Gentil
AU  - Côme Tabary
TI  - Strichartz estimates for geophysical fluid equations using Fourier restriction theory
JO  - Comptes Rendus. Mathématique
PY  - 2024
SP  - 1155
EP  - 1181
VL  - 362
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.618
LA  - en
ID  - CRMATH_2024__362_G10_1155_0
ER  - 
%0 Journal Article
%A Corentin Gentil
%A Côme Tabary
%T Strichartz estimates for geophysical fluid equations using Fourier restriction theory
%J Comptes Rendus. Mathématique
%D 2024
%P 1155-1181
%V 362
%I Académie des sciences, Paris
%R 10.5802/crmath.618
%G en
%F CRMATH_2024__362_G10_1155_0
Corentin Gentil; Côme Tabary. Strichartz estimates for geophysical fluid equations using Fourier restriction theory. Comptes Rendus. Mathématique, Volume 362 (2024), pp. 1155-1181. doi : 10.5802/crmath.618. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.618/

[1] Hajer Bahouri; Davide Barilari; Isabelle Gallagher Strichartz estimates and Fourier restriction theorems on the Heisenberg group, J. Fourier Anal. Appl., Volume 27 (2021) no. 2, 21, 41 pages | DOI | MR | Zbl

[2] Hajer Bahouri; Jean-Yves Chemin; Raphaël Danchin Fourier analysis and nonlinear partial differential equations, Grundlehren der Mathematischen Wissenschaften, 343, Springer, 2011, xvi+523 pages | DOI | MR | Zbl

[3] Anatoli Babin; Alex Mahalov; Basil Nicolaenko Regularity and integrability of 3D Euler and Navier–Stokes equations for rotating fluids, Asymptotic Anal., Volume 15 (1997) no. 2, pp. 103-150 | DOI | MR | Zbl

[4] Anatoli Babin; Alex Mahalov; Basil Nicolaenko Global regularity of 3D rotating Navier-Stokes equations for resonant domains, Indiana Univ. Math. J., Volume 48 (1999) no. 3, pp. 1133-1176 | DOI | MR | Zbl

[5] J.-Y. Chemin; B. Desjardins; I. Gallagher; E. Grenier Anisotropy and dispersion in rotating fluids, Nonlinear partial differential equations and their applications. Collège de France Seminar, Vol. XIV (Paris, 1997/1998) (Studies in Mathematics and its Applications), Volume 31, North-Holland, 2002, pp. 171-192 | DOI | MR | Zbl

[6] J.-Y. Chemin; B. Desjardins; I. Gallagher; E. Grenier Mathematical geophysics. An introduction to rotating fluids and the Navier–Stokes equations, Oxford Lecture Series in Mathematics and its Applications, 32, Clarendon Press, 2006, xii+250 pages | DOI | MR | Zbl

[7] Frédéric Charve Global well-posedness and asymptotics for a geophysical fluid system, Commun. Partial Differ. Equations, Volume 29 (2004) no. 11-12, pp. 1919-1940 | DOI | MR | Zbl

[8] Jean-Yves Chemin À propos d’un problème de pénalisation de type antisymétrique, J. Math. Pures Appl., Volume 76 (1997) no. 9, pp. 739-755 | DOI | MR | Zbl

[9] Alexandre Dutrifoy Slow convergence to vortex patches in quasigeostrophic balance, Arch. Ration. Mech. Anal., Volume 171 (2004) no. 3, pp. 417-449 | DOI | MR | Zbl

[10] Alexandre Dutrifoy Examples of dispersive effects in non-viscous rotating fluids, J. Math. Pures Appl., Volume 84 (2005) no. 3, pp. 331-356 | DOI | MR | Zbl

[11] J. Ginibre; G. Velo Generalized Strichartz inequalities for the wave equation, J. Funct. Anal., Volume 133 (1995) no. 1, pp. 50-68 | DOI | MR | Zbl

[12] Tsukasa Iwabuchi; Alex Mahalov; Ryo Takada Global solutions for the incompressible rotating stably stratified fluids, Math. Nachr., Volume 290 (2017) no. 4, pp. 613-631 | DOI | MR | Zbl

[13] Tosio Kato On nonlinear Schrödinger equations, Ann. Inst. Henri Poincaré, Phys. Théor., Volume 46 (1987) no. 1, pp. 113-129 | Numdam | MR | Zbl

[14] Tosio Kato; Hiroshi Fujita On the nonstationary Navier–Stokes system, Rend. Semin. Mat. Univ. Padova, Volume 32 (1962), pp. 243-260 | Numdam | MR | Zbl

[15] Youngwoo Koh; Sanghyuk Lee; Ryo Takada Strichartz estimates for the Euler equations in the rotational framework, J. Differ. Equations, Volume 256 (2014) no. 2, pp. 707-744 | DOI | MR | Zbl

[16] Markus Keel; Terence Tao Endpoint Strichartz estimates, Am. J. Math., Volume 120 (1998) no. 5, pp. 955-980 | DOI | MR | Zbl

[17] Jean Leray Sur le mouvement d’un liquide visqueux emplissant l’espace, Acta Math., Volume 63 (1934) no. 1, pp. 193-248 | DOI | MR | Zbl

[18] Walter Littman Fourier transforms of surface-carried measures and differentiability of surface averages, Bull. Am. Math. Soc., Volume 69 (1963), pp. 766-770 | DOI | MR | Zbl

[19] Sanghyuk Lee; Ryo Takada Dispersive estimates for the stably stratified Boussinesq equations, Indiana Univ. Math. J., Volume 66 (2017) no. 6, pp. 2037-2070 | DOI | MR | Zbl

[20] Fabio Nicola Slicing surfaces and the Fourier restriction conjecture, Proc. Edinb. Math. Soc., II. Ser., Volume 52 (2009) no. 2, pp. 515-527 | DOI | MR | Zbl

[21] Joseph Pedlosky Geophysical fluid dynamics, Springer, 1987, 710 pages | DOI | Zbl

[22] E. M. Stein Some problems in harmonic analysis, Harmonic analysis in Euclidean spaces (Proc. Sympos. Pure Math., Williams Coll., Williamstown, Mass., 1978), Part 1 (Proceedings of Symposia in Pure Mathematics), Volume XXXV, Part 1, American Mathematical Society, 1979, pp. 3-20 | MR | Zbl

[23] Robert S. Strichartz Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations, Duke Math. J., Volume 44 (1977) no. 3, pp. 705-714 | DOI | MR | Zbl

[24] Ryo Takada Strongly stratified limit for the 3D inviscid Boussinesq equations, Arch. Ration. Mech. Anal., Volume 232 (2019) no. 3, pp. 1475-1503 | DOI | MR | Zbl

[25] Terence Tao Some recent progress on the restriction conjecture, Fourier analysis and convexity (Applied and Numerical Harmonic Analysis), Birkhäuser, 2004, pp. 217-243 | DOI | MR | Zbl

[26] Peter A. Tomas A restriction theorem for the Fourier transform, Bull. Am. Math. Soc., Volume 81 (1975), pp. 477-478 | DOI | MR | Zbl

[27] Klaus Widmayer Convergence to stratified flow for an inviscid 3D Boussinesq system, Commun. Math. Sci., Volume 16 (2018) no. 6, pp. 1713-1728 | DOI | MR | Zbl

Cité par Sources :

Commentaires - Politique