[Unicité inconditionnelle pour l'équation de Schrödinger non-linéaire sous-critique dans
Let
On considère l'équation de Schrödinger linéaire sous-critique
Accepté le :
Publié le :
Keith M. Rogers 1
@article{CRMATH_2007__345_7_395_0, author = {Keith M. Rogers}, title = {Unconditional well-posedness for subcritical {NLS} in $ {H}^{s}$}, journal = {Comptes Rendus. Math\'ematique}, pages = {395--398}, publisher = {Elsevier}, volume = {345}, number = {7}, year = {2007}, doi = {10.1016/j.crma.2007.09.003}, language = {en}, }
Keith M. Rogers. Unconditional well-posedness for subcritical NLS in $ {H}^{s}$. Comptes Rendus. Mathématique, Volume 345 (2007) no. 7, pp. 395-398. doi : 10.1016/j.crma.2007.09.003. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.09.003/
[1] The Cauchy problem for the nonlinear Schrödinger equation in
[2] The Cauchy problem for the critical nonlinear Schrödinger equation in
[3] Rapidly decaying solutions of the nonlinear Schrödinger equation, Comm. Math. Phys., Volume 147 (1992) no. 1, pp. 75-100
[4] Unconditional well-posedness for semilinear Schrödinger and wave equations in
[5] Besov spaces and unconditional well-posedness for the nonlinear Schrödinger equation in
[6] The global Cauchy problem for the nonlinear Schrödinger equation revisited, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 2 (1985) no. 4, pp. 309-327
[7] On nonlinear Schrödinger equations. II.
[8] Endpoint Strichartz estimates, Amer. J. Math., Volume 120 (1998) no. 5, pp. 955-980
[9] Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations, Duke Math. J., Volume 44 (1977) no. 3, pp. 705-714
[10] Inhomogeneous Strichartz estimates for the Schrödinger equation, Trans. Amer. Math. Soc., Volume 359 (2007) no. 5, pp. 2123-2136 (electronic)
[11] Existence of solutions for Schrödinger evolution equations, Comm. Math. Phys., Volume 110 (1987) no. 3, pp. 415-426
- Local well-posedness for the inhomogeneous nonlinear Schrödinger equation, Discrete and Continuous Dynamical Systems, Volume 41 (2021) no. 11, pp. 5409-5437 | DOI:10.3934/dcds.2021082 | Zbl:1479.35759
- Unconditional local well-posedness for periodic NLS, Journal of Differential Equations, Volume 274 (2021), pp. 766-787 | DOI:10.1016/j.jde.2020.10.025 | Zbl:1454.35344
- On well-posedness for general hierarchy equations of Gross-Pitaevskii and Hartree type, Archive for Rational Mechanics and Analysis, Volume 238 (2020) no. 2, pp. 845-900 | DOI:10.1007/s00205-020-01557-9 | Zbl:1446.35179
- Unconditional uniqueness results for the nonlinear Schrödinger equation, Communications in Contemporary Mathematics, Volume 21 (2019) no. 7, p. 33 (Id/No 1850058) | DOI:10.1142/s021919971850058x | Zbl:1428.35516
- Unconditional uniqueness of solution for
critical 4th order NLS in high dimensions, Acta Mathematica Sinica. English Series, Volume 34 (2018) no. 6, pp. 1028-1036 | DOI:10.1007/s10114-017-7354-1 | Zbl:1393.35223 - Unconditional uniqueness of solution for
critical NLS in high dimensions, Journal of Mathematical Analysis and Applications, Volume 436 (2016) no. 2, pp. 1214-1222 | DOI:10.1016/j.jmaa.2015.10.077 | Zbl:1334.35318 - Local well-posedness for the
-critical nonlinear Schrödinger equation, Transactions of the American Mathematical Society, Volume 368 (2016) no. 11, pp. 7911-7934 | DOI:10.1090/tran6683 | Zbl:1372.35282 - Unconditional uniqueness of the cubic Gross-Pitaevskii hierarchy with low regularity, SIAM Journal on Mathematical Analysis, Volume 47 (2015) no. 5, pp. 3314-3341 | DOI:10.1137/140964898 | Zbl:1343.35198
- On the Unconditional Uniqueness for NLS in
, SIAM Journal on Mathematical Analysis, Volume 45 (2013) no. 3, p. 1505 | DOI:10.1137/120871808 - Continuous dependence for NLS in fractional order spaces, Annales de l'Institut Henri Poincaré. Analyse Non Linéaire, Volume 28 (2011) no. 1, pp. 135-147 | DOI:10.1016/j.anihpc.2010.11.005 | Zbl:1209.35124
Cité par 10 documents. Sources : Crossref, zbMATH
Commentaires - Politique