Let denote a Hilbert space. Given a compact subset of and two continuous functions , , we show that a necessary and sufficient condition for the existence of a convex function such that on and on is that the -jet satisfies:
- (1) for all , and
- (2) if and then .
We also solve a similar problem for replaced with an arbitrary bounded subset of , and for replaced with the class of differentiable functions with uniformly continuous derivatives on bounded subsets of .
Soit un espace de Hilbert. Nouns montrons que, étant donné un sous-ensemble compact de et deux fonctions continues , , pour qu’il existe une fonction convexe telle que dans il faut et il suffit que
- (1) pour tout , et que
- (2) si et , .
Nous résolvons également un problème similaire pour remplacé par un sous-ensemble borné arbitraire de , et pour remplacé par la classe de fonctions différentiables avec des dérivées uniformément continues sur les sous-ensembles bornés de .
Revised:
Accepted:
Published online:
Daniel Azagra 1; Carlos Mudarra 2
CC-BY 4.0
@article{CRMATH_2020__358_5_551_0,
author = {Daniel Azagra and Carlos Mudarra},
title = {Convex $C^1$ extensions of $1$-jets from compact subsets of {Hilbert} spaces},
journal = {Comptes Rendus. Math\'ematique},
pages = {551--556},
year = {2020},
publisher = {Acad\'emie des sciences, Paris},
volume = {358},
number = {5},
doi = {10.5802/crmath.62},
language = {en},
}
TY - JOUR AU - Daniel Azagra AU - Carlos Mudarra TI - Convex $C^1$ extensions of $1$-jets from compact subsets of Hilbert spaces JO - Comptes Rendus. Mathématique PY - 2020 SP - 551 EP - 556 VL - 358 IS - 5 PB - Académie des sciences, Paris DO - 10.5802/crmath.62 LA - en ID - CRMATH_2020__358_5_551_0 ER -
Daniel Azagra; Carlos Mudarra. Convex $C^1$ extensions of $1$-jets from compact subsets of Hilbert spaces. Comptes Rendus. Mathématique, Volume 358 (2020) no. 5, pp. 551-556. doi: 10.5802/crmath.62
[1] Explicit formulas for and extensions of 1-jets in Hilbert and superreflexive spaces, J. Funct. Anal., Volume 274 (2018) no. 10, pp. 3003-3032 | Zbl | MR | DOI
[2] Whitney Extension Theorems for convex functions of the classes and , Proc. Lond. Math. Soc., Volume 114 (2017) no. 1, pp. 133-158 | Zbl | MR | DOI
[3] Global geometry and convex extensions of 1-jets, Anal. PDE, Volume 12 (2019) no. 4, pp. 1065-1099 | Zbl | DOI | MR
Cited by Sources:
Comments - Policy
