This note describes some quasi-analytical solutions for wave propagation in free surface Euler equations and linearized Euler equations. The obtained solutions vary from a sinusoidal form to a form with singularities. They allow a numerical validation of the free-surface Euler codes.
Solutions quasi-analytiques d’ondes propagatives dans les équations d’Euler à surface libre. Cette note décrit des solutions quasi-analytiques correspondant à la propagation d’ondes dans les équations d’Euler et d’Euler linéarisées à surface libre. Les solutions obtenues varient d’une forme sinusoïdale à une forme présentant des singularités. Elles permettent de valider numériquement les codes de simulation des équations d’Euler à surface libre.
Accepted:
Revised after acceptance:
Published online:
Marie-Odile Bristeau 1; Bernard Di Martino 2; Anne Mangeney 1, 3; Jacques Sainte-Marie 1; Fabien Souille 1
@article{CRMATH_2020__358_11-12_1111_0, author = {Marie-Odile Bristeau and Bernard Di Martino and Anne Mangeney and Jacques Sainte-Marie and Fabien Souille}, title = {Some quasi-analytical solutions for propagative waves in free surface {Euler} equations}, journal = {Comptes Rendus. Math\'ematique}, pages = {1111--1118}, publisher = {Acad\'emie des sciences, Paris}, volume = {358}, number = {11-12}, year = {2020}, doi = {10.5802/crmath.63}, language = {en}, }
TY - JOUR AU - Marie-Odile Bristeau AU - Bernard Di Martino AU - Anne Mangeney AU - Jacques Sainte-Marie AU - Fabien Souille TI - Some quasi-analytical solutions for propagative waves in free surface Euler equations JO - Comptes Rendus. Mathématique PY - 2020 SP - 1111 EP - 1118 VL - 358 IS - 11-12 PB - Académie des sciences, Paris DO - 10.5802/crmath.63 LA - en ID - CRMATH_2020__358_11-12_1111_0 ER -
%0 Journal Article %A Marie-Odile Bristeau %A Bernard Di Martino %A Anne Mangeney %A Jacques Sainte-Marie %A Fabien Souille %T Some quasi-analytical solutions for propagative waves in free surface Euler equations %J Comptes Rendus. Mathématique %D 2020 %P 1111-1118 %V 358 %N 11-12 %I Académie des sciences, Paris %R 10.5802/crmath.63 %G en %F CRMATH_2020__358_11-12_1111_0
Marie-Odile Bristeau; Bernard Di Martino; Anne Mangeney; Jacques Sainte-Marie; Fabien Souille. Some quasi-analytical solutions for propagative waves in free surface Euler equations. Comptes Rendus. Mathématique, Volume 358 (2020) no. 11-12, pp. 1111-1118. doi : 10.5802/crmath.63. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.63/
[1] Bounds for water waves, Arch. Ration. Mech. Anal., Volume 99 (1987) no. 2, pp. 91-114 | DOI | MR | Zbl
[2] Analytical solutions for the free surface hydrostatic Euler equations, Commun. Math. Sci., Volume 11 (2013) no. 4, pp. 993-1010 | DOI | MR | Zbl
[3] Exact steady periodic water waves with vorticity, Commun. Pure Appl. Math., Volume 57 (2004) no. 4, pp. 481-527 | DOI | MR | Zbl
[4] On the Lambert function, Adv. Comput. Math., Volume 5 (1996) no. 4, pp. 329-359 | DOI | MR | Zbl
[5] The origins of water wave theory, Annual review of fluid mechanics (Annual Review of Fluid Mechanics), Volume 36, Annual Reviews, 2004, pp. 1-28 | DOI | MR | Zbl
[6] On explicite solutions of the free-surface Euler equations in the presence of gravity, Phys. Fluids, Volume 9 (1997) no. 10, pp. 2828-2834 | DOI | Zbl
[7] Water wave propagation over uneven bottoms. Part 1: Linear wave propagation. Part 2: Non-linear wave propagation. (2 vol.). (Advanced Series on Ocean Engineering), Volume 13, World Scientific, 1997 (NASA Sti/Recon Technical Report N, pages 171-184, §2.8) | Zbl
[8] Nonlinear shallow fluid flow over an isolated ridge, Commun. Pure Appl. Math., Volume 21 (1968), pp. 1-23 | DOI | Zbl
[9] Analytical approximation and numerical simulations for periodic travelling water waves, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., Volume 376 (2017) no. 21111, 20170093, 19 pages | DOI | MR | Zbl
[10] The water waves problem. Mathematical analysis and asymptotics., Mathematical Surveys and Monographs, 188, American Mathematical Society, 2013 | Zbl
[11] A Theory of the Origin of Microseisms, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., Volume 243 (1950) no. 857, pp. 1-35 | MR | Zbl
[12] The formation of breakers and bores the theory of nonlinear wave propagation in shallow water and open channels, Commun. Pure Appl. Math., Volume 1 (1948), pp. 1-87 | MR | Zbl
[13] Bound on the Slope of Steady Water Waves with Favorable Vorticity, Arch. Ration. Mech. Anal., Volume 222 (2016) no. 3, pp. 1555-1580 | DOI | MR | Zbl
Cited by Sources:
Comments - Policy