[Domaines stables pour des opérateurs elliptiques d’ordre quelconque]
Dans cet article nous démontrons que tout domaine satisfaisant une condition de -capacité de premier ordre, est automatiquement stable pour tout et pour tout . En particulier, ceci inclus tous les domaines suffisamment réguliers tels que les domaines , Lipschitz, Reifenberg-plat, mais la condition est suffisamment faible pour inclure des points de type cusp. Notre résultat généralise des résultats antérieurs de Hayouni et Pierre valables seulement en dimension et étend aussi des résultats antérieurs de Bucur et Zolésio pour des opérateurs d’ordre supérieurs, avec une preuve plus simple et différente.
This paper is devoted to prove that any domain satisfying a -capacitary condition of first order is automatically -stable for all and , and for any dimension . In particular, this includes regular enough domains such as -domains, Lipschitz domains, Reifenberg-flat domains, but is sufficiently weak to also include cusp points. Our result extends some of the results of Hayouni and Pierre valid only for , and partially extends the results of Bucur and Zolésio for higher order operators, with a different and simpler proof.
Révisé le :
Accepté le :
Publié le :
Keywords: Capacity, stable domains, $\gamma _m$-convergence, Mosco-convergence, shape optimisation
Mot clés : Capacité, domaines stables, $\gamma _m$-convergence, Mosco-convergence, optimisation de forme
Jean-François Grosjean 1 ; Antoine Lemenant 1 ; Rémy Mougenot 1
@article{CRMATH_2024__362_G10_1189_0, author = {Jean-Fran\c{c}ois Grosjean and Antoine Lemenant and R\'emy Mougenot}, title = {Stable domains for higher order elliptic operators}, journal = {Comptes Rendus. Math\'ematique}, pages = {1189--1203}, publisher = {Acad\'emie des sciences, Paris}, volume = {362}, year = {2024}, doi = {10.5802/crmath.630}, language = {en}, }
TY - JOUR AU - Jean-François Grosjean AU - Antoine Lemenant AU - Rémy Mougenot TI - Stable domains for higher order elliptic operators JO - Comptes Rendus. Mathématique PY - 2024 SP - 1189 EP - 1203 VL - 362 PB - Académie des sciences, Paris DO - 10.5802/crmath.630 LA - en ID - CRMATH_2024__362_G10_1189_0 ER -
Jean-François Grosjean; Antoine Lemenant; Rémy Mougenot. Stable domains for higher order elliptic operators. Comptes Rendus. Mathématique, Volume 362 (2024), pp. 1189-1203. doi : 10.5802/crmath.630. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.630/
[1] Function spaces and potential theory, Grundlehren der Mathematischen Wissenschaften, 314, Springer, 1995 | Zbl
[2] Topics on analysis in metric spaces, Oxford Lecture Series in Mathematics and its Applications, 25, Oxford University Press, 2004 | Zbl
[3] Variational methods in shape optimization problems, Progress in Nonlinear Differential Equations and their Applications, 65, Birkhäuser, 2005 | DOI | Zbl
[4] On the importance of the connectedness assumption in the statement of the optimal -compliance problem, J. Math. Anal. Appl., Volume 499 (2021) no. 2, p. 11 (Id/No 125064) | DOI | Zbl
[5] Flat cone condition and shape analysis, Control of partial differential equations. IFIP WG 7.2 Conference, Villa Madruzzo, Trento, Italy, January 4-9, 1993, Marcel Dekker, 1994, pp. 37-49 | Zbl
[6] -dimensional shape optimization under capacitary constraint, J. Differ. Equations, Volume 123 (1995) no. 2, pp. 504-522 | DOI | Zbl
[7] Two approximation problems in function spaces, Ark. Mat., Volume 16 (1978), pp. 51-81 | DOI | Zbl
[8] Spectral synthesis in Sobolev spaces and uniqueness of solutions of the Dirichlet problem, Acta Math., Volume 147 (1981), pp. 237-264 | DOI | Zbl
[9] Domain continuity for an elliptic operator of fourth order, Commun. Contemp. Math., Volume 4 (2002) no. 1, pp. 1-14 | DOI | Zbl
[10] Variation et optimisation de formes. Une analyse géométrique, Mathématiques & Applications (Berlin), 48, Springer, 2005 | DOI | Zbl
[11] Porosity, -porosity and measures, Nonlinearity, Volume 16 (2003) no. 1, pp. 247-255 | DOI | Zbl
[12] Porosity and -porosity, Real Anal. Exch., Volume 13 (1988) no. 2, pp. 314-350 | DOI | Zbl
[13] Weakly differentiable functions. Sobolev spaces and functions of bounded variation, Graduate Texts in Mathematics, 120, Springer, 1989 | DOI | Zbl
Cité par Sources :
Commentaires - Politique