[Optimalité des inégalités quantitatives de Muckenhoupt–Wheeden]
In the recent work [Cruz-Uribe et al. (2021)] it was obtained that
both in the matrix and scalar settings, where
Dans le récent travail [Cruz-Uribe et al. (2021)], il a été démontré
à la fois dans les contextes matriciel et scalaire, où
Accepté le :
Publié le :
DOI : 10.5802/crmath.638
Keywords: Matrix weights, quantitative bounds, endpoint estimates
Mots-clés : Poids matriciel, borne quantitative, estimations de type faible
Andrei K. Lerner 1 ; Kangwei Li 2 ; Sheldy Ombrosi 3, 4 ; Israel P. Rivera-Ríos 5

@article{CRMATH_2024__362_G10_1253_0, author = {Andrei K. Lerner and Kangwei Li and Sheldy Ombrosi and Israel P. Rivera-R{\'\i}os}, title = {On the sharpness of some quantitative {Muckenhoupt{\textendash}Wheeden} inequalities}, journal = {Comptes Rendus. Math\'ematique}, pages = {1253--1260}, publisher = {Acad\'emie des sciences, Paris}, volume = {362}, year = {2024}, doi = {10.5802/crmath.638}, zbl = {07939456}, language = {en}, }
TY - JOUR AU - Andrei K. Lerner AU - Kangwei Li AU - Sheldy Ombrosi AU - Israel P. Rivera-Ríos TI - On the sharpness of some quantitative Muckenhoupt–Wheeden inequalities JO - Comptes Rendus. Mathématique PY - 2024 SP - 1253 EP - 1260 VL - 362 PB - Académie des sciences, Paris DO - 10.5802/crmath.638 LA - en ID - CRMATH_2024__362_G10_1253_0 ER -
%0 Journal Article %A Andrei K. Lerner %A Kangwei Li %A Sheldy Ombrosi %A Israel P. Rivera-Ríos %T On the sharpness of some quantitative Muckenhoupt–Wheeden inequalities %J Comptes Rendus. Mathématique %D 2024 %P 1253-1260 %V 362 %I Académie des sciences, Paris %R 10.5802/crmath.638 %G en %F CRMATH_2024__362_G10_1253_0
Andrei K. Lerner; Kangwei Li; Sheldy Ombrosi; Israel P. Rivera-Ríos. On the sharpness of some quantitative Muckenhoupt–Wheeden inequalities. Comptes Rendus. Mathématique, Volume 362 (2024), pp. 1253-1260. doi : 10.5802/crmath.638. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.638/
[1] A sparse approach to mixed weak type inequalities, Math. Z., Volume 296 (2020) no. 1-2, pp. 787-812 | DOI | MR | Zbl
[2] Weak endpoint bounds for matrix weights, Rev. Mat. Iberoam., Volume 37 (2021) no. 4, pp. 1513-1538 | DOI | MR | Zbl
[3] Weighted weak-type inequalities and a conjecture of Sawyer, Int. Math. Res. Not., Volume 2005 (2005) no. 30, pp. 1849-1871 | DOI | MR | Zbl
[4] The matrix
[5] The sharp square function estimate with matrix weight, Discrete Anal., Volume 2019 (2019), 2, 8 pages | DOI | MR | Zbl
[6] The sharp weighted bound for general Calderón–Zygmund operators, Ann. Math., Volume 175 (2012) no. 3, pp. 1473-1506 | DOI | MR | Zbl
[7] Matrix weighted Poincaré inequalities and applications to degenerate elliptic systems, Indiana Univ. Math. J., Volume 68 (2019) no. 5, pp. 1327-1377 | DOI | MR | Zbl
[8] Sharp
[9] Proof of an extension of E. Sawyer’s conjecture about weighted mixed weak-type estimates, Math. Ann., Volume 374 (2019) no. 1-2, pp. 907-929 | DOI | MR | Zbl
[10] Some weighted weak-type inequalities for the Hardy–Littlewood maximal function and the Hilbert transform, Indiana Univ. Math. J., Volume 26 (1977) no. 5, pp. 801-816 | DOI | MR | Zbl
[11] Convex body domination and weighted estimates with matrix weights, Adv. Math., Volume 318 (2017), pp. 279-306 | DOI | MR | Zbl
[12] Quantitative weighted mixed weak-type inequalities for classical operators, Indiana Univ. Math. J., Volume 65 (2016) no. 2, pp. 615-640 | DOI | MR | Zbl
[13] A weighted weak type inequality for the maximal function, Proc. Am. Math. Soc., Volume 93 (1985) no. 4, pp. 610-614 | DOI | MR | Zbl
Cité par Sources :
Commentaires - Politique