[Optimalité des inégalités quantitatives de Muckenhoupt–Wheeden]
Dans le récent travail [Cruz-Uribe et al. (2021)], il a été démontré
à la fois dans les contextes matriciel et scalaire, où est soit la fonction maximale de Hardy-Littlewood ou tout opérateur de Calderón-Zygmund. Dans cette note, nous démontrons que la dépendance quadratique par rapport à est optimale. Cela est réalisé en construisant une séquence de poids à valeurs scalaires avec des caractéristiques d’éclatements, de sorte que les bornes correspondantes à la transformation de Hilbert et la fonction maximale soient exactement quadratiques.
In the recent work [Cruz-Uribe et al. (2021)] it was obtained that
both in the matrix and scalar settings, where is either the Hardy–Littlewood maximal function or any Calderón–Zygmund operator. In this note we show that the quadratic dependence on is sharp. This is done by constructing a sequence of scalar-valued weights with blowing up characteristics so that the corresponding bounds for the Hilbert transform and maximal function are exactly quadratic.
Accepté le :
Publié le :
Keywords: Matrix weights, quantitative bounds, endpoint estimates
Mot clés : Poids matriciel, borne quantitative, estimations de type faible $(1,1)$
Andrei K. Lerner 1 ; Kangwei Li 2 ; Sheldy Ombrosi 3, 4 ; Israel P. Rivera-Ríos 5
@article{CRMATH_2024__362_G10_1253_0, author = {Andrei K. Lerner and Kangwei Li and Sheldy Ombrosi and Israel P. Rivera-R{\'\i}os}, title = {On the sharpness of some quantitative {Muckenhoupt{\textendash}Wheeden} inequalities}, journal = {Comptes Rendus. Math\'ematique}, pages = {1253--1260}, publisher = {Acad\'emie des sciences, Paris}, volume = {362}, year = {2024}, doi = {10.5802/crmath.638}, language = {en}, }
TY - JOUR AU - Andrei K. Lerner AU - Kangwei Li AU - Sheldy Ombrosi AU - Israel P. Rivera-Ríos TI - On the sharpness of some quantitative Muckenhoupt–Wheeden inequalities JO - Comptes Rendus. Mathématique PY - 2024 SP - 1253 EP - 1260 VL - 362 PB - Académie des sciences, Paris DO - 10.5802/crmath.638 LA - en ID - CRMATH_2024__362_G10_1253_0 ER -
%0 Journal Article %A Andrei K. Lerner %A Kangwei Li %A Sheldy Ombrosi %A Israel P. Rivera-Ríos %T On the sharpness of some quantitative Muckenhoupt–Wheeden inequalities %J Comptes Rendus. Mathématique %D 2024 %P 1253-1260 %V 362 %I Académie des sciences, Paris %R 10.5802/crmath.638 %G en %F CRMATH_2024__362_G10_1253_0
Andrei K. Lerner; Kangwei Li; Sheldy Ombrosi; Israel P. Rivera-Ríos. On the sharpness of some quantitative Muckenhoupt–Wheeden inequalities. Comptes Rendus. Mathématique, Volume 362 (2024), pp. 1253-1260. doi : 10.5802/crmath.638. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.638/
[1] A sparse approach to mixed weak type inequalities, Math. Z., Volume 296 (2020) no. 1-2, pp. 787-812 | DOI | MR | Zbl
[2] Weak endpoint bounds for matrix weights, Rev. Mat. Iberoam., Volume 37 (2021) no. 4, pp. 1513-1538 | DOI | MR | Zbl
[3] Weighted weak-type inequalities and a conjecture of Sawyer, Int. Math. Res. Not., Volume 2005 (2005) no. 30, pp. 1849-1871 | DOI | MR | Zbl
[4] The matrix conjecture fails, i.e. (2024)
[5] The sharp square function estimate with matrix weight, Discrete Anal., Volume 2019 (2019), 2, 8 pages | DOI | MR | Zbl
[6] The sharp weighted bound for general Calderón–Zygmund operators, Ann. Math., Volume 175 (2012) no. 3, pp. 1473-1506 | DOI | MR | Zbl
[7] Matrix weighted Poincaré inequalities and applications to degenerate elliptic systems, Indiana Univ. Math. J., Volume 68 (2019) no. 5, pp. 1327-1377 | DOI | MR | Zbl
[8] Sharp weighted estimates for vector-valued operators, J. Geom. Anal., Volume 31 (2021) no. 3, pp. 3085-3116 | DOI | MR | Zbl
[9] Proof of an extension of E. Sawyer’s conjecture about weighted mixed weak-type estimates, Math. Ann., Volume 374 (2019) no. 1-2, pp. 907-929 | DOI | MR | Zbl
[10] Some weighted weak-type inequalities for the Hardy–Littlewood maximal function and the Hilbert transform, Indiana Univ. Math. J., Volume 26 (1977) no. 5, pp. 801-816 | DOI | MR | Zbl
[11] Convex body domination and weighted estimates with matrix weights, Adv. Math., Volume 318 (2017), pp. 279-306 | DOI | MR | Zbl
[12] Quantitative weighted mixed weak-type inequalities for classical operators, Indiana Univ. Math. J., Volume 65 (2016) no. 2, pp. 615-640 | DOI | MR | Zbl
[13] A weighted weak type inequality for the maximal function, Proc. Am. Math. Soc., Volume 93 (1985) no. 4, pp. 610-614 | DOI | MR | Zbl
Cité par Sources :
Commentaires - Politique