[Borne inférieure à la vitesse critique d’une impureté dans un condensat de Bose–Einstein]
Dans le modèle Bogoliubov–Fröhlich, nous prouvons qu’une impureté immergée dans un condensat de Bose–Einstein forme une quasi-particule stable lorsque la quantité de mouvement totale est inférieure à sa masse multipliée par la vitesse du son. Le système présente donc un comportement superfluide, car cette quasi-particule ne subit pas de frottement. Nous ne supposons aucune régularisation infrarouge ou ultraviolette du modèle, qui contient des excitations sans masse et des interactions ponctuelles.
In the Bogoliubov–Fröhlich model, we prove that an impurity immersed in a Bose–Einstein condensate forms a stable quasi-particle when the total momentum is less than its mass times the speed of sound. The system thus exhibits superfluid behavior, as this quasi-particle does not experience friction. We do not assume any infrared or ultraviolet regularization of the model, which contains massless excitations and point-like interactions.
Accepté le :
Publié le :
Keywords: Polaron, energy-momentum spectrum, Cherenkov transition, renormalization
Mot clés : Polaron, spectre énergie-impulsion, transition Cherenkov, renormalisation
Benjamin Hinrichs 1 ; Jonas Lampart 2
@article{CRMATH_2024__362_G11_1399_0, author = {Benjamin Hinrichs and Jonas Lampart}, title = {A {Lower} {Bound} on the {Critical} {Momentum} of an {Impurity} in a {Bose{\textendash}Einstein} {Condensate}}, journal = {Comptes Rendus. Math\'ematique}, pages = {1399--1411}, publisher = {Acad\'emie des sciences, Paris}, volume = {362}, year = {2024}, doi = {10.5802/crmath.652}, language = {en}, }
TY - JOUR AU - Benjamin Hinrichs AU - Jonas Lampart TI - A Lower Bound on the Critical Momentum of an Impurity in a Bose–Einstein Condensate JO - Comptes Rendus. Mathématique PY - 2024 SP - 1399 EP - 1411 VL - 362 PB - Académie des sciences, Paris DO - 10.5802/crmath.652 LA - en ID - CRMATH_2024__362_G11_1399_0 ER -
Benjamin Hinrichs; Jonas Lampart. A Lower Bound on the Critical Momentum of an Impurity in a Bose–Einstein Condensate. Comptes Rendus. Mathématique, Volume 362 (2024), pp. 1399-1411. doi : 10.5802/crmath.652. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.652/
[1] A Hamiltonian model for linear friction in a homogeneous medium, Commun. Math. Phys., Volume 229 (2002) no. 3, pp. 511-542 | DOI | MR | Zbl
[2] Quantum electrodynamics of confined nonrelativistic particles, Adv. Math., Volume 137 (1998) no. 2, pp. 299-395 | DOI | MR | Zbl
[3] Ground state properties of the Nelson Hamiltonian: a Gibbs measure-based approach, Rev. Math. Phys., Volume 14 (2002) no. 2, pp. 173-198 | arXiv | DOI | MR | Zbl
[4] The ground state problem for a quantum Hamiltonian model describing friction, Can. J. Math., Volume 59 (2007) no. 5, pp. 897-916 | DOI | MR | Zbl
[5] Quasiparticle Properties of a Mobile Impurity in a Bose–Einstein Condensate, Phys. Rev. Lett., Volume 115 (2015), 160401, 5 pages | arXiv | DOI
[6] Absence of ground states in the translation invariant massless Nelson model, Ann. Henri Poincaré, Volume 21 (2020) no. 8, pp. 2655-2679 | arXiv | DOI | MR | Zbl
[7] Spectral analysis of a model for quantum friction, Rev. Math. Phys., Volume 29 (2017) no. 6, 1750019, 49 pages | arXiv | DOI | MR | Zbl
[8] Effective dynamics of a tracer particle interacting with an ideal Bose gas, Commun. Math. Phys., Volume 328 (2014) no. 2, pp. 597-624 | arXiv | DOI | MR | Zbl
[9] Asymptotic completeness in quantum field theory. Massive Pauli–Fierz Hamiltonians, Rev. Math. Phys., Volume 11 (1999) no. 4, pp. 383-450 | DOI | MR | Zbl
[10] Absence of ground states in the renormalized massless translation-invariant Nelson model, Rev. Math. Phys., Volume 34 (2022) no. 10, 2250033, 42 pages | DOI | MR | Zbl
[11] Coulomb scattering in the massless Nelson model I. Foundations of two-electron scattering, J. Stat. Phys., Volume 154 (2014) no. 1-2, pp. 543-587 | arXiv | DOI | MR | Zbl
[12] Effective mass of the polaron – revisited, Ann. Henri Poincaré, Volume 21 (2020) no. 5, pp. 1573-1594 | arXiv | DOI | MR | Zbl
[13] Hamiltonian dynamics of a particle interacting with a wave field, Commun. Partial Differ. Equations, Volume 38 (2013) no. 12, pp. 2155-2198 | arXiv | DOI | MR | Zbl
[14] Some Hamiltonian models of friction II, J. Math. Phys., Volume 53 (2012) no. 10, 103707, 35 pages | arXiv | DOI | MR
[15] Ballistic motion of a tracer particle coupled to a Bose gas, Adv. Math., Volume 259 (2014), pp. 252-268 | arXiv | DOI | MR | Zbl
[16] Emission of Cherenkov radiation as a mechanism for Hamiltonian friction, Adv. Math., Volume 264 (2014), pp. 183-235 | arXiv | DOI | MR | Zbl
[17] Some Hamiltonian models of friction, J. Math. Phys., Volume 52 (2011) no. 8, 083508, 13 pages | arXiv | DOI | MR | Zbl
[18] Friction in a model of Hamiltonian dynamics, Commun. Math. Phys., Volume 315 (2012) no. 2, pp. 401-444 | arXiv | DOI | MR | Zbl
[19] On the infrared problem in a model of scalar electrons and massless, scalar bosons, Ann. Inst. Henri Poincaré, Nouv. Sér., Sect. A, Volume 19 (1973), pp. 1-103 | MR | Zbl
[20] New theoretical approaches to Bose polarons, Quantum Matter at Ultralow Temperatures (Proceedings of the international school of physics “Enrico Fermi”), Volume 191 (2016), pp. 325-411 | arXiv | DOI
[21] Ground states in non-relativistic quantum electrodynamics, Invent. Math., Volume 145 (2001) no. 3, pp. 557-595 | arXiv | DOI | MR | Zbl
[22] Existence and uniqueness of physical ground states, J. Funct. Anal., Volume 10 (1972), pp. 52-109 | DOI | MR | Zbl
[23] Strong-coupling Bose polarons in a Bose-Einstein condensate, Phys. Rev. A, Volume 96 (2017) no. 1, 013607, 25 pages | arXiv | DOI
[24] On the existence of ground states for massless Pauli–Fierz Hamiltonians, Ann. Henri Poincaré, Volume 1 (2000) no. 3, pp. 443-459 | DOI | MR | Zbl
[25] Absence of ground states for a class of translation invariant models of non-relativistic QED, Commun. Math. Phys., Volume 279 (2008) no. 3, pp. 769-787 | arXiv | DOI | MR | Zbl
[26] On existence of ground states in the spin boson model, Commun. Math. Phys., Volume 388 (2021) no. 1, pp. 419-433 | arXiv | DOI | MR | Zbl
[27] Non-Fock ground states in the translation-invariant Nelson model revisited non-perturbatively, J. Funct. Anal., Volume 286 (2024) no. 7, 110319, 44 pages | DOI | MR | Zbl
[28] Existence of Ground States for Infrared-Critical Models of Quantum Field Theory, Ph. D. Thesis, Friedrich Schiller University Jena (2022) | DOI
[29] Ground states and associated path measures in the renormalized Nelson model, Rev. Math. Phys., Volume 34 (2022) no. 2, 2250002, 84 pages | DOI | Zbl
[30] Ground states for translationally invariant Pauli-Fierz models at zero momentum, J. Funct. Anal., Volume 284 (2023) no. 1, 109725, 28 pages | arXiv | DOI | MR | Zbl
[31] A nonrelativistic quantum field theory with point interactions in three dimensions, Ann. Henri Poincaré, Volume 20 (2019) no. 11, pp. 3509-3541 | arXiv | DOI | MR | Zbl
[32] The renormalized Bogoliubov–Fröhlich Hamiltonian, J. Math. Phys., Volume 61 (2020) no. 10, 101902, 12 pages | arXiv | DOI | MR | Zbl
[33] The resolvent of the Nelson Hamiltonian improves positivity, Math. Phys. Anal. Geom., Volume 24 (2021) no. 1, 2, 17 pages | arXiv | DOI | MR | Zbl
[34] Hamiltonians for polaron models with subcritical ultraviolet singularities, Ann. Henri Poincaré, Volume 24 (2023) no. 8, pp. 2687-2728 | arXiv | DOI | MR | Zbl
[35] Lowest energy states in nonrelativistic QED: atoms and ions in motion, J. Funct. Anal., Volume 243 (2007) no. 2, pp. 353-393 | arXiv | DOI | MR | Zbl
[36] Dynamics of a tracer particle interacting with excitations of a Bose–Einstein condensate, Ann. Henri Poincaré, Volume 23 (2022) no. 8, pp. 2855-2876 | arXiv | DOI | MR | Zbl
[37] On Nelson-type Hamiltonians and abstract boundary conditions, Commun. Math. Phys., Volume 367 (2019) no. 2, pp. 629-663 | arXiv | DOI | MR | Zbl
[38] The excitation spectrum of a dilute Bose gas with an impurity (2024) (https://arxiv.org/abs/2401.14911)
[39] Scattering for a particle interacting with a Bose gas, Commun. Partial Differ. Equations, Volume 45 (2020) no. 10, pp. 1381-1413 | arXiv | DOI | MR | Zbl
[40] Continuity properties of the semi-group and its integral kernel in non-relativistic QED, Rev. Math. Phys., Volume 28 (2016) no. 5, 1650011, 90 pages | arXiv | DOI | MR | Zbl
[41] Microscopic derivation of the Fröhlich Hamiltonian for the Bose polaron in the mean-field limit, Ann. Henri Poincaré, Volume 21 (2020) no. 12, pp. 4003-4025 | arXiv | DOI | MR | Zbl
[42] The translation invariant massive Nelson model. I. The bottom of the spectrum, Ann. Henri Poincaré, Volume 6 (2005) no. 6, pp. 1091-1135 | DOI | MR | Zbl
[43] Interaction of nonrelativistic particles with a quantized scalar field, J. Math. Phys., Volume 5 (1964), pp. 1190-1197 | DOI | MR | Zbl
[44] One-particle (improper) states in Nelson’s massless model, Ann. Henri Poincaré, Volume 4 (2003) no. 3, pp. 439-486 | DOI | MR | Zbl
[45] Methods of modern mathematical physics. I. Functional analysis, Academic Press Inc., 1972, xvii+325 pages | MR
[46] On a direct description of pseudorelativistic Nelson Hamiltonians, J. Math. Phys., Volume 60 (2019) no. 10, 102303, 21 pages | arXiv | DOI | MR | Zbl
[47] The massless Nelson Hamiltonian and its domain, Mathematical challenges of zero-range physics – models, methods, rigorous results, open problems (Springer INdAM Series), Volume 42, Springer, 2021, pp. 57-80 | arXiv | DOI | MR
[48] The polaron at strong coupling, Rev. Math. Phys., Volume 33 (2021) no. 1, 2060012, 21 pages | arXiv | DOI | MR | Zbl
[49] The polaron at large total momentum, J. Phys. A. Math. Gen., Volume 21 (1988) no. 5, pp. 1199-1211 | DOI | MR
[50] Ground state of a quantum particle coupled to a scalar Bose field, Lett. Math. Phys., Volume 44 (1998) no. 1, pp. 9-16 | DOI | MR | Zbl
[51] Dynamical Quantum Cherenkov Transition of Fast Impurities in Quantum Liquids, Phys. Rev. Lett., Volume 127 (2021), 185302, 6 pages | arXiv | DOI
[52] Quantum Cherenkov transition of finite momentum Bose polarons (2021) (https://arxiv.org/abs/2109.12260)
[53] Intermediate spectral theory and quantum dynamics, Progress in Mathematical Physics, 54, Birkhäuser, 2009, xvi+410 pages | DOI | MR | Zbl
Cité par Sources :
Commentaires - Politique