[Quelques propriétés qualitatives des équations de Lichnerowicz et de Ginzburg–Landau sur les graphes localement finis]
Soit un graphe pondéré localement fini. Nous étudions certaines propriétés qualitatives des solutions positives de l’équation de Lichnerowicz
et des solutions (avec changement de signe) du système de Ginzburg-Landau
où , et est le laplacien discret standard des graphes. Tout d’abord, nous prouvons que toutes les solutions positives de l’équation de Lichnerowicz satisfont à . De plus, si nous supposons qu’une solution positive v est bornée, alors elle doit être triviale, c’est-à-dire . Nous construisons également une solution positive non bornée de l’équation de Lichnerowicz. Deuxièmement, nous obtenons une majoration précise pour les solutions du système de Ginzburg-Landau en fonction de l’étendue .
Let be a locally finite weighted graph. We study some qualitative properties of positive solutions of the Lichnerowicz equation
and of (sign-changing) solutions of the Ginzburg-Landau system
where , and is the standard discrete graph Laplacian. Firstly, we prove that any positive solution of the Lichnerowicz equation satisfies . Moreover, if we assume the boundedness of positive solution , then it must be trivial, i.e . We also construct a nontrivial positive solution of the Lichnerowicz equation to show that the boundedness assumption is necessary. Secondly, we obtain sharp upper bound for solutions of the Ginzburg-Landau system depending on the range of .
Révisé le :
Accepté le :
Publié le :
Keywords: Liouville-type theorems, Lichnerowicz equations, Ginzburg–Landau system, nonexistence results, qualitative property, locally finite graphs
Mot clés : Théorèmes de type Liouville, équations de Lichnerowicz, système de Ginzburg–Landau, résultats de non-existence, propriété qualitative, graphes localement finis
Anh Tuan Duong 1 ; Setsuro Fujiié 2
@article{CRMATH_2024__362_G11_1413_0, author = {Anh Tuan Duong and Setsuro Fujii\'e}, title = {Some qualitative properties of {Lichnerowicz} equations and {Ginzburg{\textendash}Landau} systems on locally finite graphs}, journal = {Comptes Rendus. Math\'ematique}, pages = {1413--1423}, publisher = {Acad\'emie des sciences, Paris}, volume = {362}, year = {2024}, doi = {10.5802/crmath.653}, language = {en}, }
TY - JOUR AU - Anh Tuan Duong AU - Setsuro Fujiié TI - Some qualitative properties of Lichnerowicz equations and Ginzburg–Landau systems on locally finite graphs JO - Comptes Rendus. Mathématique PY - 2024 SP - 1413 EP - 1423 VL - 362 PB - Académie des sciences, Paris DO - 10.5802/crmath.653 LA - en ID - CRMATH_2024__362_G11_1413_0 ER -
%0 Journal Article %A Anh Tuan Duong %A Setsuro Fujiié %T Some qualitative properties of Lichnerowicz equations and Ginzburg–Landau systems on locally finite graphs %J Comptes Rendus. Mathématique %D 2024 %P 1413-1423 %V 362 %I Académie des sciences, Paris %R 10.5802/crmath.653 %G en %F CRMATH_2024__362_G11_1413_0
Anh Tuan Duong; Setsuro Fujiié. Some qualitative properties of Lichnerowicz equations and Ginzburg–Landau systems on locally finite graphs. Comptes Rendus. Mathématique, Volume 362 (2024), pp. 1413-1423. doi : 10.5802/crmath.653. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.653/
[1] Comments on two notes by L. Ma and X. Xu [MR2721787; MR2543987], C. R. Math. Acad. Sci. Paris, Volume 349 (2011) no. 5-6, pp. 269-271 | DOI | MR | Zbl
[2] Uniform lower bound and Liouville type theorem for fractional Lichnerowicz equations, Bull. Aust. Math. Soc., Volume 104 (2021) no. 3, pp. 484-492 | DOI | MR | Zbl
[3] Monotonicity and rigidity of solutions to some elliptic systems with uniform limits, Commun. Contemp. Math., Volume 22 (2020) no. 5, 1950044, 24 pages | DOI | MR | Zbl
[4] A -th Yamabe equation on graph, Proc. Am. Math. Soc., Volume 146 (2018) no. 5, pp. 2219-2224 | DOI | MR | Zbl
[5] A note on Liouville type equations on graphs, Proc. Am. Math. Soc., Volume 146 (2018) no. 11, pp. 4837-4842 | DOI | MR | Zbl
[6] Semi-linear elliptic inequalities on weighted graphs, Calc. Var. Partial Differ. Equ., Volume 62 (2023) no. 2, 42, 14 pages | DOI | MR | Zbl
[7] Kazdan–Warner equation on graph, Calc. Var. Partial Differ. Equ., Volume 55 (2016) no. 4, 92, 13 pages | DOI | MR | Zbl
[8] Yamabe type equations on graphs, J. Differ. Equations, Volume 261 (2016) no. 9, pp. 4924-4943 | DOI | MR | Zbl
[9] Introduction to analysis on graphs, University Lecture Series, 71, American Mathematical Society, 2018, viii+150 pages | DOI | MR | Zbl
[10] The existence of extremal functions for discrete Sobolev inequalities on lattice graphs, J. Differ. Equations, Volume 305 (2021), pp. 224-241 | DOI | MR | Zbl
[11] -Laplacian equations on locally finite graphs, Acta Math. Sin., Engl. Ser., Volume 37 (2021) no. 11, pp. 1645-1678 | DOI | MR | Zbl
[12] Existence and convergence of solutions for nonlinear biharmonic equations on graphs, J. Differ. Equations, Volume 268 (2020) no. 7, pp. 3936-3961 | DOI | MR | Zbl
[13] Elliptic problems on weighted locally finite graphs, Topol. Methods Nonlinear Anal., Volume 61 (2023) no. 1, pp. 501-526 | DOI | MR | Zbl
[14] Nonexistence of global solutions for a class of nonlinear parabolic equations on graphs, Bull. Malays. Math. Sci. Soc., Volume 46 (2023) no. 6, 189, 22 pages | DOI | MR | Zbl
[15] The existence and nonexistence of global solutions for a semilinear heat equation on graphs, Calc. Var. Partial Differ. Equ., Volume 56 (2017) no. 4, 102, 22 pages | DOI | MR | Zbl
[16] Blow-up problems for nonlinear parabolic equations on locally finite graphs, Acta Math. Sci., Ser. B, Engl. Ed., Volume 38 (2018) no. 3, pp. 843-856 | DOI | MR | Zbl
[17] Multiple solutions of Kazdan–Warner equation on graphs in the negative case, Calc. Var. Partial Differ. Equ., Volume 59 (2020) no. 5, 164, 15 pages | DOI | MR | Zbl
[18] Positive solutions of Yamabe-type equations with function coefficients on graphs, J. Math. Anal. Appl., Volume 473 (2019) no. 2, pp. 1343-1357 | DOI | MR | Zbl
[19] Liouville type theorem and uniform bound for the Lichnerowicz equation and the Ginzburg–Landau equation, C. R. Math. Acad. Sci. Paris, Volume 348 (2010) no. 17-18, pp. 993-996 | DOI | Numdam | MR | Zbl
[20] Boundedness of solutions to Ginzburg-Landau fractional Laplacian equation, Int. J. Math., Volume 27 (2016) no. 5, 1650048, 6 pages | DOI | MR | Zbl
[21] Liouville type theorems for a system of elliptic inequalities on weighted graph (2023) (preprint)
[22] Kato’s inequality and Liouville theorems on locally finite graphs, Sci. China, Math., Volume 56 (2013) no. 4, pp. 771-776 | DOI | MR | Zbl
[23] Uniform bound and a non-existence result for Lichnerowicz equation in the whole -space, C. R. Math. Acad. Sci. Paris, Volume 347 (2009) no. 13-14, pp. 805-808 | DOI | Numdam | MR | Zbl
[24] Blow-up for a semilinear heat equation with Fujita’s critical exponent on locally finite graphs, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM, Volume 115 (2021) no. 3, 133, 16 pages | DOI | MR | Zbl
[25] Blow-up conditions for a semilinear parabolic system on locally finite graphs, Acta Math. Sci., Ser. B, Engl. Ed., Volume 44 (2024) no. 2, pp. 609-631 | DOI | MR | Zbl
Cité par Sources :
Commentaires - Politique