Comptes Rendus
Article de recherche - Théorie des représentations
On a theorem of B. Keller on Yoneda algebras of simple modules
[Sur un théorème de B. Keller sur les algèbres de Yoneda de modules simples]
Comptes Rendus. Mathématique, Volume 362 (2024), pp. 1449-1453.

Un théorème de Keller stipule que l’algèbre de Yoneda des modules simples sur une algèbre de dimension finie est générée en degrés cohomologiques 0 et 1 comme une A -algèbre minimale. Nous prouvons une extension du théorème de Keller aux catégories de longueur abélienne en réduisant le problème à une classe particulière d’algèbres de Nakayama, où l’affirmation peut être démontrée par un calcul direct.

A theorem of Keller states that the Yoneda algebra of the simple modules over a finite-dimensional algebra is generated in cohomological degrees 0 and 1 as a minimal A -algebra. We provide a proof of an extension of Keller’s theorem to abelian length categories by reducing the problem to a particular class of Nakayama algebras, where the claim can be shown by direct computation.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.655
Classification : 18G70, 16G20, 16G70
Keywords: Yoneda algebras, simple modules, Nakayama algebras, $A_\infty $-algebras
Mot clés : Algèbres de Yoneda, modules simples, algèbres de Nakayama, $A_\infty $-algèbres

Gustavo Jasso 1

1 Lund University, Centre for Mathematical Sciences, Box 118, 22100 Lund, Sweden
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2024__362_G11_1449_0,
     author = {Gustavo Jasso},
     title = {On a theorem of {B.~Keller} on {Yoneda} algebras of simple modules},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1449--1453},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {362},
     year = {2024},
     doi = {10.5802/crmath.655},
     language = {en},
}
TY  - JOUR
AU  - Gustavo Jasso
TI  - On a theorem of B. Keller on Yoneda algebras of simple modules
JO  - Comptes Rendus. Mathématique
PY  - 2024
SP  - 1449
EP  - 1453
VL  - 362
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.655
LA  - en
ID  - CRMATH_2024__362_G11_1449_0
ER  - 
%0 Journal Article
%A Gustavo Jasso
%T On a theorem of B. Keller on Yoneda algebras of simple modules
%J Comptes Rendus. Mathématique
%D 2024
%P 1449-1453
%V 362
%I Académie des sciences, Paris
%R 10.5802/crmath.655
%G en
%F CRMATH_2024__362_G11_1449_0
Gustavo Jasso. On a theorem of B. Keller on Yoneda algebras of simple modules. Comptes Rendus. Mathématique, Volume 362 (2024), pp. 1449-1453. doi : 10.5802/crmath.655. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.655/

[1] Ibrahim Assem; Daniel Simson; Andrzej Skowroński Elements of the representation theory of associative algebras. Vol. 1. Techniques of representation theory, London Mathematical Society Student Texts, 65, Cambridge University Press, 2006, x+458 pages | DOI | MR | Zbl

[2] Urtzi Buijs; José M. Moreno-Fernández; Aniceto Murillo A structures and Massey products, Mediterr. J. Math., Volume 17 (2020) no. 1, 31, 15 pages | DOI | MR | Zbl

[3] Xiaofa Chen On exact dg categories (2023) (https://arxiv.org/abs/2306.08231) | DOI

[4] E. Herscovich A simple note on the Yoneda (co)algebra of a monomial algebra, Ukraïn. Mat. Zh., Volume 73 (2021) no. 2, pp. 275-277 | DOI | MR | Zbl

[5] T. V. Kadeishvili The algebraic structure in the homology of an A()-algebra, Soobshch. Akad. Nauk Gruzin. SSR, Volume 108 (1982) no. 2, pp. 249-252 | MR | Zbl

[6] Bernhard Keller Introduction to A-infinity algebras and modules, Homology Homotopy Appl., Volume 3 (2001) no. 1, pp. 1-35 | DOI | MR | Zbl

[7] Bernhard Keller A-infinity algebras in representation theory, Representations of algebra. Vol. I (D. Happel; Y. B. Zhang, eds.), Beijing Norm. Univ. Press (2002), pp. 74-86 | MR | Zbl

[8] Bernhard Keller On differential graded categories, International Congress of Mathematicians. Vol. II, European Mathematical Society, 2006, pp. 151-190 | MR | Zbl

[9] Bernhard Keller Deriving DG categories, Ann. Sci. Éc. Norm. Supér., Volume 27 (1994) no. 1, pp. 63-102 | DOI | Numdam | MR | Zbl

[10] Julian Külshammer; Vanessa Miemietz Uniqueness of exact Borel subalgebras and bocses (2021) (https://arxiv.org/abs/2109.03586)

[11] Henning Krause; Dieter Vossieck Length categories of infinite height, Geometric and topological aspects of the representation theory of finite groups (Springer Proceedings in Mathematics & Statistics), Volume 242, Springer, 2018, pp. 213-234 | DOI | MR | Zbl

[12] Kenji Lefèvre-Hasegawa Sur les A-infini catégories (2003) (https://arxiv.org/abs/math/0310337)

[13] Dag-Oskar Madsen Homologcal aspects in representation theory, Ph. D. Thesis, Norges teknisk-naturvitenskapelige universitet (NTNU) (2002)

[14] Dag-Oskar Madsen Ext-algebra generated by Hom and Ext 1 as A -algebra? (2015) https://mathoverflow.net/q/215918 (version: 2015-08-29)

[15] Martin Markl Transferring A (strongly homotopy associative) structures, Rend. Circ. Mat. Palermo, Volume 79 (2006), pp. 139-151 | MR | Zbl

[16] Hiroyuki Minamoto Higher products on Yoneda Ext algebras, Proceedings of the 48th Symposium on Ring Theory and Representation Theory, Symp. Ring Theory Represent. Theory Organ. Comm., Yamanashi (2016), pp. 92-95 | MR | Zbl

[17] Pedro Tamaroff Minimal models for monomial algebras, Homology Homotopy Appl., Volume 23 (2021) no. 1, pp. 341-366 | DOI | MR | Zbl

[18] Jean-Louis Verdier Des catégories dérivées des catégories abéliennes, Astérisque, 239, Société Mathématique de France, 1996, xii+253 pages (With a preface by Luc Illusie, Edited and with a note by Georges Maltsiniotis) | Numdam | MR | Zbl

[19] Nobuo Yoneda On Ext and exact sequences, J. Fac. Sci. Univ. Tokyo, Sect. I, Volume 8 (1960), pp. 507-576 | MR | Zbl

Cité par Sources :

Commentaires - Politique