[Sur un théorème de B. Keller sur les algèbres de Yoneda de modules simples]
Un théorème de Keller stipule que l’algèbre de Yoneda des modules simples sur une algèbre de dimension finie est générée en degrés cohomologiques et comme une -algèbre minimale. Nous prouvons une extension du théorème de Keller aux catégories de longueur abélienne en réduisant le problème à une classe particulière d’algèbres de Nakayama, où l’affirmation peut être démontrée par un calcul direct.
A theorem of Keller states that the Yoneda algebra of the simple modules over a finite-dimensional algebra is generated in cohomological degrees and as a minimal -algebra. We provide a proof of an extension of Keller’s theorem to abelian length categories by reducing the problem to a particular class of Nakayama algebras, where the claim can be shown by direct computation.
Révisé le :
Accepté le :
Publié le :
Keywords: Yoneda algebras, simple modules, Nakayama algebras, $A_\infty $-algebras
Mot clés : Algèbres de Yoneda, modules simples, algèbres de Nakayama, $A_\infty $-algèbres
Gustavo Jasso 1
@article{CRMATH_2024__362_G11_1449_0, author = {Gustavo Jasso}, title = {On a theorem of {B.~Keller} on {Yoneda} algebras of simple modules}, journal = {Comptes Rendus. Math\'ematique}, pages = {1449--1453}, publisher = {Acad\'emie des sciences, Paris}, volume = {362}, year = {2024}, doi = {10.5802/crmath.655}, language = {en}, }
Gustavo Jasso. On a theorem of B. Keller on Yoneda algebras of simple modules. Comptes Rendus. Mathématique, Volume 362 (2024), pp. 1449-1453. doi : 10.5802/crmath.655. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.655/
[1] Elements of the representation theory of associative algebras. Vol. 1. Techniques of representation theory, London Mathematical Society Student Texts, 65, Cambridge University Press, 2006, x+458 pages | DOI | MR | Zbl
[2] structures and Massey products, Mediterr. J. Math., Volume 17 (2020) no. 1, 31, 15 pages | DOI | MR | Zbl
[3] On exact dg categories (2023) (https://arxiv.org/abs/2306.08231) | DOI
[4] A simple note on the Yoneda (co)algebra of a monomial algebra, Ukraïn. Mat. Zh., Volume 73 (2021) no. 2, pp. 275-277 | DOI | MR | Zbl
[5] The algebraic structure in the homology of an -algebra, Soobshch. Akad. Nauk Gruzin. SSR, Volume 108 (1982) no. 2, pp. 249-252 | MR | Zbl
[6] Introduction to -infinity algebras and modules, Homology Homotopy Appl., Volume 3 (2001) no. 1, pp. 1-35 | DOI | MR | Zbl
[7] -infinity algebras in representation theory, Representations of algebra. Vol. I (D. Happel; Y. B. Zhang, eds.), Beijing Norm. Univ. Press (2002), pp. 74-86 | MR | Zbl
[8] On differential graded categories, International Congress of Mathematicians. Vol. II, European Mathematical Society, 2006, pp. 151-190 | MR | Zbl
[9] Deriving DG categories, Ann. Sci. Éc. Norm. Supér., Volume 27 (1994) no. 1, pp. 63-102 | DOI | Numdam | MR | Zbl
[10] Uniqueness of exact Borel subalgebras and bocses (2021) (https://arxiv.org/abs/2109.03586)
[11] Length categories of infinite height, Geometric and topological aspects of the representation theory of finite groups (Springer Proceedings in Mathematics & Statistics), Volume 242, Springer, 2018, pp. 213-234 | DOI | MR | Zbl
[12] Sur les -infini catégories (2003) (https://arxiv.org/abs/math/0310337)
[13] Homologcal aspects in representation theory, Ph. D. Thesis, Norges teknisk-naturvitenskapelige universitet (NTNU) (2002)
[14] -algebra generated by and as -algebra? (2015) https://mathoverflow.net/q/215918 (version: 2015-08-29)
[15] Transferring (strongly homotopy associative) structures, Rend. Circ. Mat. Palermo, Volume 79 (2006), pp. 139-151 | MR | Zbl
[16] Higher products on Yoneda algebras, Proceedings of the 48th Symposium on Ring Theory and Representation Theory, Symp. Ring Theory Represent. Theory Organ. Comm., Yamanashi (2016), pp. 92-95 | MR | Zbl
[17] Minimal models for monomial algebras, Homology Homotopy Appl., Volume 23 (2021) no. 1, pp. 341-366 | DOI | MR | Zbl
[18] Des catégories dérivées des catégories abéliennes, Astérisque, 239, Société Mathématique de France, 1996, xii+253 pages (With a preface by Luc Illusie, Edited and with a note by Georges Maltsiniotis) | Numdam | MR | Zbl
[19] On Ext and exact sequences, J. Fac. Sci. Univ. Tokyo, Sect. I, Volume 8 (1960), pp. 507-576 | MR | Zbl
Cité par Sources :
Commentaires - Politique