[Sur un théorème de B. Keller sur les algèbres de Yoneda de modules simples]
A theorem of Keller states that the Yoneda algebra of the simple modules over a finite-dimensional algebra is generated in cohomological degrees
Un théorème de Keller stipule que l’algèbre de Yoneda des modules simples sur une algèbre de dimension finie est générée en degrés cohomologiques
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.655
Keywords: Yoneda algebras, simple modules, Nakayama algebras,
Mots-clés : Algèbres de Yoneda, modules simples, algèbres de Nakayama,
Gustavo Jasso 1

@article{CRMATH_2024__362_G11_1449_0, author = {Gustavo Jasso}, title = {On a theorem of {B.~Keller} on {Yoneda} algebras of simple modules}, journal = {Comptes Rendus. Math\'ematique}, pages = {1449--1453}, publisher = {Acad\'emie des sciences, Paris}, volume = {362}, year = {2024}, doi = {10.5802/crmath.655}, zbl = {07945487}, language = {en}, }
Gustavo Jasso. On a theorem of B. Keller on Yoneda algebras of simple modules. Comptes Rendus. Mathématique, Volume 362 (2024), pp. 1449-1453. doi : 10.5802/crmath.655. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.655/
[1] Elements of the representation theory of associative algebras. Vol. 1. Techniques of representation theory, London Mathematical Society Student Texts, 65, Cambridge University Press, 2006, x+458 pages | DOI | MR | Zbl
[2]
[3] On exact dg categories (2023) (https://arxiv.org/abs/2306.08231) | DOI
[4] A simple note on the Yoneda (co)algebra of a monomial algebra, Ukraïn. Mat. Zh., Volume 73 (2021) no. 2, pp. 275-277 | DOI | MR | Zbl
[5] The algebraic structure in the homology of an
[6] Introduction to
[7]
[8] On differential graded categories, International Congress of Mathematicians. Vol. II, European Mathematical Society, 2006, pp. 151-190 | MR | Zbl
[9] Deriving DG categories, Ann. Sci. Éc. Norm. Supér., Volume 27 (1994) no. 1, pp. 63-102 | DOI | Numdam | MR | Zbl
[10] Uniqueness of exact Borel subalgebras and bocses (2021) (https://arxiv.org/abs/2109.03586)
[11] Length categories of infinite height, Geometric and topological aspects of the representation theory of finite groups (Springer Proceedings in Mathematics & Statistics), Volume 242, Springer, 2018, pp. 213-234 | DOI | MR | Zbl
[12] Sur les
[13] Homologcal aspects in representation theory, Ph. D. Thesis, Norges teknisk-naturvitenskapelige universitet (NTNU) (2002)
[14]
[15] Transferring
[16] Higher products on Yoneda
[17] Minimal models for monomial algebras, Homology Homotopy Appl., Volume 23 (2021) no. 1, pp. 341-366 | DOI | MR | Zbl
[18] Des catégories dérivées des catégories abéliennes, Astérisque, 239, Société Mathématique de France, 1996, xii+253 pages (With a preface by Luc Illusie, Edited and with a note by Georges Maltsiniotis) | Numdam | MR | Zbl
[19] On Ext and exact sequences, J. Fac. Sci. Univ. Tokyo, Sect. I, Volume 8 (1960), pp. 507-576 | MR | Zbl
Cité par Sources :
Commentaires - Politique