Comptes Rendus
Article de recherche - Équations aux dérivées partielles
Relaxing the sharp density stratification and columnar motion assumptions in layered shallow water systems
[Assouplissement des hypothèses relatives à la stratification nette et à l’écoulement en colonnes dans les systèmes de Saint-Venant]
Comptes Rendus. Mathématique, Volume 362 (2024), pp. 1597-1626.

Nous justifions rigoureusement les équations de Saint-Venant bicouche en tant que modèle pour les équations d’Euler hydrostatiques dans les situations où l’écoulement est stratifié avec des profils de densité et de vitesse approximativement constants par morceaux. Notre théorie accepte des profils continus, de sorte que les écarts admissibles par rapport aux profils parfaitement bicouches ne sont pas petits pour la distance uniforme. Cela nous amène à définir des solutions approchantes raffinées capables de décrire au premier ordre l’écoulement dans la pycnocline. En l’absence d’estimations de stabilité appropriées sur les équations d’Euler hydrostatiques, nous nous appuyons sur des contributions de diffusivité sur les variables d’épaisseur proposées par Gent et McWilliams. Notre stratégie s’applique également aux équations de Saint-Venant monocouche et multicouche.

We rigorously justify the bilayer shallow-water system as an approximation to the hydrostatic Euler equations in situations where the flow is density-stratified with close-to-piecewise constant density profiles, and close-to-columnar velocity profiles. Our theory accommodates with continuous stratification, so that admissible deviations from bilayer profiles are not pointwise small. This leads us to define refined approximate solutions that are able to describe at first order the flow in the pycnocline. Because the hydrostatic Euler equations are not known to enjoy suitable stability estimates, we rely on thickness-diffusivity contributions proposed by Gent and McWilliams. Our strategy also applies to one-layer and multilayer frameworks.

Reçu le :
Accepté le :
Accepté après révision le :
Publié le :
DOI : 10.5802/crmath.665
Classification : 35L03, 35Q35, 76B55, 76E17
Keywords: Internal waves, Hydrostatic models, Sharp stratification limit, Columnar motion
Mots-clés : Ondes internes, Modèles hydrostatiques, limite d’interface, écoulements en colonne

Mahieddine Adim 1 ; Roberta Bianchini 2 ; Vincent Duchêne 1, 3

1 IRMAR, Univ. Rennes, F-35000 Rennes, France
2 IAC, Consiglio Nazionale delle Ricerche, 00185 Rome, Italy
3 CNRS
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2024__362_G12_1597_0,
     author = {Mahieddine Adim and Roberta Bianchini and Vincent Duch\^ene},
     title = {Relaxing the sharp density stratification and columnar motion assumptions in layered shallow water systems},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1597--1626},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {362},
     year = {2024},
     doi = {10.5802/crmath.665},
     language = {en},
}
TY  - JOUR
AU  - Mahieddine Adim
AU  - Roberta Bianchini
AU  - Vincent Duchêne
TI  - Relaxing the sharp density stratification and columnar motion assumptions in layered shallow water systems
JO  - Comptes Rendus. Mathématique
PY  - 2024
SP  - 1597
EP  - 1626
VL  - 362
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.665
LA  - en
ID  - CRMATH_2024__362_G12_1597_0
ER  - 
%0 Journal Article
%A Mahieddine Adim
%A Roberta Bianchini
%A Vincent Duchêne
%T Relaxing the sharp density stratification and columnar motion assumptions in layered shallow water systems
%J Comptes Rendus. Mathématique
%D 2024
%P 1597-1626
%V 362
%I Académie des sciences, Paris
%R 10.5802/crmath.665
%G en
%F CRMATH_2024__362_G12_1597_0
Mahieddine Adim; Roberta Bianchini; Vincent Duchêne. Relaxing the sharp density stratification and columnar motion assumptions in layered shallow water systems. Comptes Rendus. Mathématique, Volume 362 (2024), pp. 1597-1626. doi : 10.5802/crmath.665. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.665/

[1] A. Almgren; R. Camassa; R. Tiron Shear instability of internal solitary waves in Euler fluids with thin pycnoclines, J. Fluid Mech., Volume 710 (2012), pp. 324-361 | DOI | MR | Zbl

[2] Mahieddine Adim Approximating a continuously stratified hydrostatic system by the multi-layer shallow water system, Asymptotic Anal. (2024), 54 pages (pre-press) | DOI

[3] Mahieddine Adim Modèles continument stratifiés et systèmes multi-couches pour les écoulements géophysiques, Ph. D. Thesis, Univ. Rennes (2024)

[4] Pascal Azérad; Francisco Guillén Mathematical justification of the hydrostatic approximation in the primitive equations of geophysical fluid dynamics, SIAM J. Math. Anal., Volume 33 (2001) no. 4, pp. 847-859 | DOI | MR | Zbl

[5] C. J. Amick; R. E. L. Turner A global theory of internal solitary waves in two-fluid systems, Trans. Am. Math. Soc., Volume 298 (1986) no. 2, pp. 431-484 | DOI | MR | Zbl

[6] Ricardo Barros; Wooyoung Choi On the hyperbolicity of two-layer flows, Frontiers of applied and computational mathematics, World Scientific, 2008, pp. 95-103 | DOI | MR | Zbl

[7] Hajer Bahouri; Jean-Yves Chemin; Raphaël Danchin Fourier analysis and nonlinear partial differential equations, Grundlehren der Mathematischen Wissenschaften, 343, Springer, 2011, xvi+523 pages | DOI | MR | Zbl

[8] Roberta Bianchini; Michele Coti Zelati; Lucas Ertzbischoff Ill-posedness of the hydrostatic Euler-Boussinesq equations and failure of hydrostatic limit (2024) (https://arxiv.org/abs/2403.17857)

[9] Didier Bresch; Benoît Desjardins Existence of global weak solutions for a 2D viscous shallow water equations and convergence to the quasi-geostrophic model, Commun. Math. Phys., Volume 238 (2003) no. 1-2, pp. 211-223 | DOI | MR | Zbl

[10] Didier Bresch; Benoît Desjardins Some diffusive capillary models of Korteweg type, C. R. Méc. Acad. Sci. Paris, Volume 332 (2004) no. 11, pp. 881-886 | DOI | Zbl

[11] Roberta Bianchini; Vincent Duchêne On the hydrostatic limit of stably stratified fluids with isopycnal diffusivity, Commun. Partial Differ. Equations, Volume 49 (2024) no. 5-6, pp. 543-608 | DOI | MR | Zbl

[12] Didier Bresch; Benoît Desjardins; Chi-Kun Lin On some compressible fluid models: Korteweg, lubrication, and shallow water systems, Commun. Partial Differ. Equations, Volume 28 (2003) no. 3-4, pp. 843-868 | DOI | MR | Zbl

[13] Didier Bresch; Benoît Desjardins; Ewelina Zatorska Two-velocity hydrodynamics in fluid mechanics: Part II. Existence of global κ-entropy solutions to the compressible Navier-Stokes systems with degenerate viscosities, J. Math. Pures Appl., Volume 104 (2015) no. 4, pp. 801-836 | DOI | MR | Zbl

[14] Darek Bogucki; Chris Garrett A simple model for the shear-induced decay of an internal solitary wave, J. Phys. Oceanogr., Volume 23 (1993) no. 8, pp. 1767-1776 | DOI

[15] Sylvie Benzoni-Gavage; Denis Serre Multidimensional hyperbolic partial differential equations. First-order systems and applications, Oxford Mathematical Monographs, Clarendon Press, 2007, xxvi+508 pages | MR | Zbl

[16] Jerry L. Bona; David Lannes; Jean-Claude Saut Asymptotic models for internal waves, J. Math. Pures Appl., Volume 89 (2008) no. 6, pp. 538-566 | DOI | MR | Zbl

[17] Didier Bresch; Pascal Noble Mathematical justification of a shallow water model, Methods Appl. Anal., Volume 14 (2007) no. 2, pp. 87-117 | DOI | MR | Zbl

[18] Yann Brenier Homogeneous hydrostatic flows with convex velocity profiles, Nonlinearity, Volume 12 (1999) no. 3, pp. 495-512 | DOI | MR | Zbl

[19] R. Camassa; R. Tiron Optimal two-layer approximation for continuous density stratification, J. Fluid Mech., Volume 669 (2011), pp. 32-54 | DOI | MR | Zbl

[20] Benoît Desjardins; David Lannes; Jean-Claude Saut Normal mode decomposition and dispersive and nonlinear mixing in stratified fluids, Water Waves, Volume 3 (2021) no. 1, pp. 153-192 | DOI | MR | Zbl

[21] Vincent Duchêne Asymptotic shallow water models for internal waves in a two-fluid system with a free surface, SIAM J. Math. Anal., Volume 42 (2010) no. 5, pp. 2229-2260 | DOI | MR | Zbl

[22] Vincent Duchêne A note on the well-posedness of the one-dimensional multilayer shallow water model (2013) (https://hal.science/hal-00922045)

[23] Vincent Duchêne Many Models for Water Waves (2021) (https://www.ams.org/open-math-notes/omn-view-listing?listingId=111309)

[24] Ken Furukawa; Yoshikazu Giga; Matthias Hieber; Amru Hussein; Takahito Kashiwabara; Marc Wrona Rigorous justification of the hydrostatic approximation for the primitive equations by scaled Navier-Stokes equations, Nonlinearity, Volume 33 (2020) no. 12, pp. 6502-6516 | DOI | MR | Zbl

[25] Théo Fradin Well-posedness of the Euler equations in a stably stratified ocean in isopycnal coordinates (2024) (https://arxiv.org/abs/2406.13263)

[26] Peter R. Gent The energetically consistent shallow-water equations, J. Atmos. Sci., Volume 50 (1993) no. 9, pp. 1323-1325 | DOI

[27] Adrian E. Gill Atmosphere – ocean dynamics, International Geophysics Series, 30, Academic Press Inc., 1982

[28] John Grue; Atle Jensen; Per-Olav Rusås; J. Kristian Sveen Properties of large-amplitude internal waves, J. Fluid Mech., Volume 380 (1999), pp. 257-278 | DOI | MR | Zbl

[29] Peter R. Gent; J. C. McWilliams Isopycnal Mixing in Ocean Circulation Models, J. Phys. Oceanogr., Volume 20 (1990) no. 1, pp. 150-155 | DOI

[30] J.-F. Gerbeau; B. Perthame Derivation of viscous Saint-Venant system for laminar shallow water; numerical validation, Discrete Contin. Dyn. Syst., Ser. B, Volume 1 (2001) no. 1, pp. 89-102 | DOI | MR | Zbl

[31] Emmanuel Grenier On the derivation of homogeneous hydrostatic equations, M2AN, Math. Model. Numer. Anal., Volume 33 (1999) no. 5, pp. 965-970 | DOI | MR | Zbl

[32] Louis N. Howard Note on a paper of John W. Miles, J. Fluid Mech., Volume 10 (1961), pp. 509-512 | DOI | MR | Zbl

[33] Guillaume James Internal travelling waves in the limit of a discontinuously stratified fluid, Arch. Ration. Mech. Anal., Volume 160 (2001) no. 1, pp. 41-90 | DOI | MR | Zbl

[34] Tosio Kato Perturbation theory for linear operators, Classics in Mathematics, Springer, 1995, xxii+619 pages | DOI | MR | Zbl

[35] V. Kamotski; G. Lebeau On 2D Rayleigh-Taylor instabilities, Asymptotic Anal., Volume 42 (2005) no. 1-2, pp. 1-27 | MR | Zbl

[36] Igor Kukavica; Roger Temam; Vlad C. Vicol; Mohammed Ziane Local existence and uniqueness for the hydrostatic Euler equations on a bounded domain, J. Differ. Equations, Volume 250 (2011) no. 3, pp. 1719-1746 | DOI | MR | Zbl

[37] David Lannes A Stability Criterion for Two-Fluid Interfaces and Applications, Arch. Ration. Mech. Anal., Volume 208 (2013) no. 2, pp. 481-567 | DOI | MR | Zbl

[38] David Lannes The water waves problem. Mathematical analysis and asymptotics, Mathematical Surveys and Monographs, 188, American Mathematical Society, 2013, xx+321 pages | DOI | MR | Zbl

[39] Jinkai Li; Edriss S. Titi The primitive equations as the small aspect ratio limit of the Navier–Stokes equations: rigorous justification of the hydrostatic approximation, J. Math. Pures Appl., Volume 124 (2019), pp. 30-58 | DOI | MR | Zbl

[40] Jinkai Li; Edriss S. Titi; Guozhi Yuan The primitive equations approximation of the anisotropic horizontally viscous 3D Navier-Stokes equations, J. Differ. Equations, Volume 306 (2022), pp. 492-524 | DOI | MR | Zbl

[41] John W. Miles On the stability of heterogeneous shear flows, J. Fluid Mech., Volume 10 (1961), pp. 496-508 | DOI | MR | Zbl

[42] Nader Masmoudi; Tak Kwong Wong On the H s theory of hydrostatic Euler equations, Arch. Ration. Mech. Anal., Volume 204 (2012) no. 1, pp. 231-271 | DOI | MR | Zbl

[43] L. V. Ovsjannikov Models of two-layered “shallow water”, Zh. Prikl. Mekh. i Tekhn. Fiz., Volume 2 (1979), pp. 3-14 | MR

[44] Xueke Pu; Wenli Zhou On the rigorous mathematical derivation for the viscous primitive equations with density stratification, Acta Math. Sci., Ser. B, Engl. Ed., Volume 43 (2023) no. 3, pp. 1081-1104 | DOI | MR | Zbl

[45] Xueke Pu; Wenli Zhou Rigorous derivation of the full primitive equations by the scaled Boussinesq equations with rotation, Bull. Malays. Math. Sci. Soc., Volume 46 (2023) no. 3, 88, 23 pages | DOI | MR | Zbl

[46] V. M. Teshukov On Cauchy problem for long wave equations, Free boundary problems in continuum mechanics (Novosibirsk, 1991) (ISNM. International Series of Numerical Mathematics), Volume 106, Birkhäuser, 1992, pp. 331-338 | DOI | MR | Zbl

[47] R. E. L. Turner Internal waves in fluids with rapidly varying density, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume 8 (1981) no. 4, pp. 513-573 | Numdam | MR | Zbl

[48] Francisco de Melo Viríssimo; Paul A. Milewski Nonlinear stability of two-layer shallow water flows with a free surface, Proc. R. Soc. Lond., Ser. A, Volume 476 (2020) no. 2236, 20190594, 20 pages | DOI | MR | Zbl

[49] Brian L. White; Karl R. Helfrich A model for internal bores in continuous stratification, J. Fluid Mech., Volume 761 (2014), pp. 282-304 | DOI | MR

Cité par Sources :

Commentaires - Politique