[Assouplissement des hypothèses relatives à la stratification nette et à l’écoulement en colonnes dans les systèmes de Saint-Venant]
Nous justifions rigoureusement les équations de Saint-Venant bicouche en tant que modèle pour les équations d’Euler hydrostatiques dans les situations où l’écoulement est stratifié avec des profils de densité et de vitesse approximativement constants par morceaux. Notre théorie accepte des profils continus, de sorte que les écarts admissibles par rapport aux profils parfaitement bicouches ne sont pas petits pour la distance uniforme. Cela nous amène à définir des solutions approchantes raffinées capables de décrire au premier ordre l’écoulement dans la pycnocline. En l’absence d’estimations de stabilité appropriées sur les équations d’Euler hydrostatiques, nous nous appuyons sur des contributions de diffusivité sur les variables d’épaisseur proposées par Gent et McWilliams. Notre stratégie s’applique également aux équations de Saint-Venant monocouche et multicouche.
We rigorously justify the bilayer shallow-water system as an approximation to the hydrostatic Euler equations in situations where the flow is density-stratified with close-to-piecewise constant density profiles, and close-to-columnar velocity profiles. Our theory accommodates with continuous stratification, so that admissible deviations from bilayer profiles are not pointwise small. This leads us to define refined approximate solutions that are able to describe at first order the flow in the pycnocline. Because the hydrostatic Euler equations are not known to enjoy suitable stability estimates, we rely on thickness-diffusivity contributions proposed by Gent and McWilliams. Our strategy also applies to one-layer and multilayer frameworks.
Accepté le :
Accepté après révision le :
Publié le :
Keywords: Internal waves, Hydrostatic models, Sharp stratification limit, Columnar motion
Mots-clés : Ondes internes, Modèles hydrostatiques, limite d’interface, écoulements en colonne
Mahieddine Adim 1 ; Roberta Bianchini 2 ; Vincent Duchêne 1, 3
@article{CRMATH_2024__362_G12_1597_0, author = {Mahieddine Adim and Roberta Bianchini and Vincent Duch\^ene}, title = {Relaxing the sharp density stratification and columnar motion assumptions in layered shallow water systems}, journal = {Comptes Rendus. Math\'ematique}, pages = {1597--1626}, publisher = {Acad\'emie des sciences, Paris}, volume = {362}, year = {2024}, doi = {10.5802/crmath.665}, language = {en}, }
TY - JOUR AU - Mahieddine Adim AU - Roberta Bianchini AU - Vincent Duchêne TI - Relaxing the sharp density stratification and columnar motion assumptions in layered shallow water systems JO - Comptes Rendus. Mathématique PY - 2024 SP - 1597 EP - 1626 VL - 362 PB - Académie des sciences, Paris DO - 10.5802/crmath.665 LA - en ID - CRMATH_2024__362_G12_1597_0 ER -
%0 Journal Article %A Mahieddine Adim %A Roberta Bianchini %A Vincent Duchêne %T Relaxing the sharp density stratification and columnar motion assumptions in layered shallow water systems %J Comptes Rendus. Mathématique %D 2024 %P 1597-1626 %V 362 %I Académie des sciences, Paris %R 10.5802/crmath.665 %G en %F CRMATH_2024__362_G12_1597_0
Mahieddine Adim; Roberta Bianchini; Vincent Duchêne. Relaxing the sharp density stratification and columnar motion assumptions in layered shallow water systems. Comptes Rendus. Mathématique, Volume 362 (2024), pp. 1597-1626. doi : 10.5802/crmath.665. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.665/
[1] Shear instability of internal solitary waves in Euler fluids with thin pycnoclines, J. Fluid Mech., Volume 710 (2012), pp. 324-361 | DOI | MR | Zbl
[2] Approximating a continuously stratified hydrostatic system by the multi-layer shallow water system, Asymptotic Anal. (2024), 54 pages (pre-press) | DOI
[3] Modèles continument stratifiés et systèmes multi-couches pour les écoulements géophysiques, Ph. D. Thesis, Univ. Rennes (2024)
[4] Mathematical justification of the hydrostatic approximation in the primitive equations of geophysical fluid dynamics, SIAM J. Math. Anal., Volume 33 (2001) no. 4, pp. 847-859 | DOI | MR | Zbl
[5] A global theory of internal solitary waves in two-fluid systems, Trans. Am. Math. Soc., Volume 298 (1986) no. 2, pp. 431-484 | DOI | MR | Zbl
[6] On the hyperbolicity of two-layer flows, Frontiers of applied and computational mathematics, World Scientific, 2008, pp. 95-103 | DOI | MR | Zbl
[7] Fourier analysis and nonlinear partial differential equations, Grundlehren der Mathematischen Wissenschaften, 343, Springer, 2011, xvi+523 pages | DOI | MR | Zbl
[8] Ill-posedness of the hydrostatic Euler-Boussinesq equations and failure of hydrostatic limit (2024) (https://arxiv.org/abs/2403.17857)
[9] Existence of global weak solutions for a 2D viscous shallow water equations and convergence to the quasi-geostrophic model, Commun. Math. Phys., Volume 238 (2003) no. 1-2, pp. 211-223 | DOI | MR | Zbl
[10] Some diffusive capillary models of Korteweg type, C. R. Méc. Acad. Sci. Paris, Volume 332 (2004) no. 11, pp. 881-886 | DOI | Zbl
[11] On the hydrostatic limit of stably stratified fluids with isopycnal diffusivity, Commun. Partial Differ. Equations, Volume 49 (2024) no. 5-6, pp. 543-608 | DOI | MR | Zbl
[12] On some compressible fluid models: Korteweg, lubrication, and shallow water systems, Commun. Partial Differ. Equations, Volume 28 (2003) no. 3-4, pp. 843-868 | DOI | MR | Zbl
[13] Two-velocity hydrodynamics in fluid mechanics: Part II. Existence of global -entropy solutions to the compressible Navier-Stokes systems with degenerate viscosities, J. Math. Pures Appl., Volume 104 (2015) no. 4, pp. 801-836 | DOI | MR | Zbl
[14] A simple model for the shear-induced decay of an internal solitary wave, J. Phys. Oceanogr., Volume 23 (1993) no. 8, pp. 1767-1776 | DOI
[15] Multidimensional hyperbolic partial differential equations. First-order systems and applications, Oxford Mathematical Monographs, Clarendon Press, 2007, xxvi+508 pages | MR | Zbl
[16] Asymptotic models for internal waves, J. Math. Pures Appl., Volume 89 (2008) no. 6, pp. 538-566 | DOI | MR | Zbl
[17] Mathematical justification of a shallow water model, Methods Appl. Anal., Volume 14 (2007) no. 2, pp. 87-117 | DOI | MR | Zbl
[18] Homogeneous hydrostatic flows with convex velocity profiles, Nonlinearity, Volume 12 (1999) no. 3, pp. 495-512 | DOI | MR | Zbl
[19] Optimal two-layer approximation for continuous density stratification, J. Fluid Mech., Volume 669 (2011), pp. 32-54 | DOI | MR | Zbl
[20] Normal mode decomposition and dispersive and nonlinear mixing in stratified fluids, Water Waves, Volume 3 (2021) no. 1, pp. 153-192 | DOI | MR | Zbl
[21] Asymptotic shallow water models for internal waves in a two-fluid system with a free surface, SIAM J. Math. Anal., Volume 42 (2010) no. 5, pp. 2229-2260 | DOI | MR | Zbl
[22] A note on the well-posedness of the one-dimensional multilayer shallow water model (2013) (https://hal.science/hal-00922045)
[23] Many Models for Water Waves (2021) (https://www.ams.org/open-math-notes/omn-view-listing?listingId=111309)
[24] Rigorous justification of the hydrostatic approximation for the primitive equations by scaled Navier-Stokes equations, Nonlinearity, Volume 33 (2020) no. 12, pp. 6502-6516 | DOI | MR | Zbl
[25] Well-posedness of the Euler equations in a stably stratified ocean in isopycnal coordinates (2024) (https://arxiv.org/abs/2406.13263)
[26] The energetically consistent shallow-water equations, J. Atmos. Sci., Volume 50 (1993) no. 9, pp. 1323-1325 | DOI
[27] Atmosphere – ocean dynamics, International Geophysics Series, 30, Academic Press Inc., 1982
[28] Properties of large-amplitude internal waves, J. Fluid Mech., Volume 380 (1999), pp. 257-278 | DOI | MR | Zbl
[29] Isopycnal Mixing in Ocean Circulation Models, J. Phys. Oceanogr., Volume 20 (1990) no. 1, pp. 150-155 | DOI
[30] Derivation of viscous Saint-Venant system for laminar shallow water; numerical validation, Discrete Contin. Dyn. Syst., Ser. B, Volume 1 (2001) no. 1, pp. 89-102 | DOI | MR | Zbl
[31] On the derivation of homogeneous hydrostatic equations, M2AN, Math. Model. Numer. Anal., Volume 33 (1999) no. 5, pp. 965-970 | DOI | MR | Zbl
[32] Note on a paper of John W. Miles, J. Fluid Mech., Volume 10 (1961), pp. 509-512 | DOI | MR | Zbl
[33] Internal travelling waves in the limit of a discontinuously stratified fluid, Arch. Ration. Mech. Anal., Volume 160 (2001) no. 1, pp. 41-90 | DOI | MR | Zbl
[34] Perturbation theory for linear operators, Classics in Mathematics, Springer, 1995, xxii+619 pages | DOI | MR | Zbl
[35] On 2D Rayleigh-Taylor instabilities, Asymptotic Anal., Volume 42 (2005) no. 1-2, pp. 1-27 | MR | Zbl
[36] Local existence and uniqueness for the hydrostatic Euler equations on a bounded domain, J. Differ. Equations, Volume 250 (2011) no. 3, pp. 1719-1746 | DOI | MR | Zbl
[37] A Stability Criterion for Two-Fluid Interfaces and Applications, Arch. Ration. Mech. Anal., Volume 208 (2013) no. 2, pp. 481-567 | DOI | MR | Zbl
[38] The water waves problem. Mathematical analysis and asymptotics, Mathematical Surveys and Monographs, 188, American Mathematical Society, 2013, xx+321 pages | DOI | MR | Zbl
[39] The primitive equations as the small aspect ratio limit of the Navier–Stokes equations: rigorous justification of the hydrostatic approximation, J. Math. Pures Appl., Volume 124 (2019), pp. 30-58 | DOI | MR | Zbl
[40] The primitive equations approximation of the anisotropic horizontally viscous 3 Navier-Stokes equations, J. Differ. Equations, Volume 306 (2022), pp. 492-524 | DOI | MR | Zbl
[41] On the stability of heterogeneous shear flows, J. Fluid Mech., Volume 10 (1961), pp. 496-508 | DOI | MR | Zbl
[42] On the theory of hydrostatic Euler equations, Arch. Ration. Mech. Anal., Volume 204 (2012) no. 1, pp. 231-271 | DOI | MR | Zbl
[43] Models of two-layered “shallow water”, Zh. Prikl. Mekh. i Tekhn. Fiz., Volume 2 (1979), pp. 3-14 | MR
[44] On the rigorous mathematical derivation for the viscous primitive equations with density stratification, Acta Math. Sci., Ser. B, Engl. Ed., Volume 43 (2023) no. 3, pp. 1081-1104 | DOI | MR | Zbl
[45] Rigorous derivation of the full primitive equations by the scaled Boussinesq equations with rotation, Bull. Malays. Math. Sci. Soc., Volume 46 (2023) no. 3, 88, 23 pages | DOI | MR | Zbl
[46] On Cauchy problem for long wave equations, Free boundary problems in continuum mechanics (Novosibirsk, 1991) (ISNM. International Series of Numerical Mathematics), Volume 106, Birkhäuser, 1992, pp. 331-338 | DOI | MR | Zbl
[47] Internal waves in fluids with rapidly varying density, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume 8 (1981) no. 4, pp. 513-573 | Numdam | MR | Zbl
[48] Nonlinear stability of two-layer shallow water flows with a free surface, Proc. R. Soc. Lond., Ser. A, Volume 476 (2020) no. 2236, 20190594, 20 pages | DOI | MR | Zbl
[49] A model for internal bores in continuous stratification, J. Fluid Mech., Volume 761 (2014), pp. 282-304 | DOI | MR
Cité par Sources :
Commentaires - Politique