Comptes Rendus
Article de recherche - Géométrie et Topologie
Classification results for polyharmonic helices in space forms
[Résultats de classification des hélices polyharmoniques dans les espaces formes]
Comptes Rendus. Mathématique, Volume 362 (2024), pp. 1521-1537.

Nous obtenons divers résultats de classification des hélices polyharmoniques, c’est à dire des courbes polyharmoniques dont les courbures géodésiques sont toutes constantes, dans les espaces formes. Nous obtenons une classification complète des hélices triharmoniques sur les sphères de dimension arbitraire. De plus, nous montrons que les hélices polyharmoniques d’ordre arbitraire à courbure géodésique non nulle dans des espaces formes de courbure négative sont des géodésiques.

We derive various classification results for polyharmonic helices, which are polyharmonic curves whose geodesic curvatures are all constant, in space forms. We obtain a complete classification of triharmonic helices in spheres of arbitrary dimension. Moreover, we show that polyharmonic helices of arbitrary order with non-zero geodesic curvatures to space forms of negative curvature must be geodesics.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.666
Classification : 58E20, 53C43, 31B30, 58E10
Keywords: r-harmonic curves, helices, space form
Mot clés : Courbes r-harmonique, hélices, espaces formes

Volker Branding 1

1 University of Vienna, Faculty of Mathematics Oskar-Morgenstern-Platz 1, 1090 Vienna, Austria
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2024__362_G11_1521_0,
     author = {Volker Branding},
     title = {Classification results for polyharmonic helices in space forms},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1521--1537},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {362},
     year = {2024},
     doi = {10.5802/crmath.666},
     language = {en},
}
TY  - JOUR
AU  - Volker Branding
TI  - Classification results for polyharmonic helices in space forms
JO  - Comptes Rendus. Mathématique
PY  - 2024
SP  - 1521
EP  - 1537
VL  - 362
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.666
LA  - en
ID  - CRMATH_2024__362_G11_1521_0
ER  - 
%0 Journal Article
%A Volker Branding
%T Classification results for polyharmonic helices in space forms
%J Comptes Rendus. Mathématique
%D 2024
%P 1521-1537
%V 362
%I Académie des sciences, Paris
%R 10.5802/crmath.666
%G en
%F CRMATH_2024__362_G11_1521_0
Volker Branding. Classification results for polyharmonic helices in space forms. Comptes Rendus. Mathématique, Volume 362 (2024), pp. 1521-1537. doi : 10.5802/crmath.666. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.666/

[1] Volker Branding; Stefano Montaldo; Cezar Oniciuc; Andrea Ratto Higher order energy functionals, Adv. Math., Volume 370 (2020), 107236, 60 pages | DOI | MR | Zbl

[2] Volker Branding On polyharmonic helices in space forms, Arch. Math., Volume 120 (2023) no. 2, pp. 213-225 | DOI | MR | Zbl

[3] Volker Branding On p-biharmonic curves, J. Math. Anal. Appl., Volume 538 (2024) no. 2, 128384 | DOI | MR | Zbl

[4] Renzo Caddeo; Stefano Montaldo; Cezar Oniciuc Biharmonic submanifolds of S 3 , Int. J. Math., Volume 12 (2001) no. 8, pp. 867-876 | DOI | MR | Zbl

[5] Renzo Caddeo; Stefano Montaldo; Cezar Oniciuc Biharmonic submanifolds in spheres, Isr. J. Math., Volume 130 (2002), pp. 109-123 | DOI | MR | Zbl

[6] Renzo Caddeo; Stefano Montaldo; Cezar Oniciuc; Paola Piu The Euler–Lagrange method for biharmonic curves, Mediterr. J. Math., Volume 3 (2006) no. 3-4, pp. 449-465 | DOI | MR | Zbl

[7] François Gay-Balmaz; Darryl D. Holm; David M. Meier; Tudor S. Ratiu; François-Xavier Vialard Invariant higher-order variational problems, Commun. Math. Phys., Volume 309 (2012) no. 2, pp. 413-458 | DOI | MR | Zbl

[8] Shun Maeta The second variational formula of the k-energy and k-harmonic curves, Osaka J. Math., Volume 49 (2012) no. 4, pp. 1035-1063 | MR | Zbl

[9] Stefano Montaldo; Cezar Oniciuc; Andrea Ratto Reduction methods for the bienergy, Rev. Roum. Math. Pures Appl., Volume 61 (2016) no. 4, pp. 261-292 | MR | Zbl

[10] Stefano Montaldo; Cezar Oniciuc; Andrea Ratto Polyharmonic hypersurfaces into space forms, Isr. J. Math., Volume 249 (2022) no. 1, pp. 343-374 | DOI | MR | Zbl

[11] Stefano Montaldo; A. Pámpano Triharmonic curves in 3-dimensional homogeneous spaces, Mediterr. J. Math., Volume 18 (2021) no. 5, 198, 17 pages | DOI | MR | Zbl

[12] Stefano Montaldo; Andrea Ratto A general approach to equivariant biharmonic maps, Mediterr. J. Math., Volume 10 (2013) no. 2, pp. 1127-1139 | DOI | MR | Zbl

[13] Jerrold E. Marsden; Tudor S. Ratiu Introduction to mechanics and symmetry. A basic exposition of classical mechanical systems, Texts in Applied Mathematics, 17, Springer, 1999, xviii+582 pages | DOI | MR | Zbl

[14] S. B. Wang The First Variation Formula for k-Harmonic Mapping, Journal of Nanchang University, Volume 13 (1989)

Cité par Sources :

Commentaires - Politique