[Résultats de classification des hélices polyharmoniques dans les espaces formes]
Nous obtenons divers résultats de classification des hélices polyharmoniques, c’est à dire des courbes polyharmoniques dont les courbures géodésiques sont toutes constantes, dans les espaces formes. Nous obtenons une classification complète des hélices triharmoniques sur les sphères de dimension arbitraire. De plus, nous montrons que les hélices polyharmoniques d’ordre arbitraire à courbure géodésique non nulle dans des espaces formes de courbure négative sont des géodésiques.
We derive various classification results for polyharmonic helices, which are polyharmonic curves whose geodesic curvatures are all constant, in space forms. We obtain a complete classification of triharmonic helices in spheres of arbitrary dimension. Moreover, we show that polyharmonic helices of arbitrary order with non-zero geodesic curvatures to space forms of negative curvature must be geodesics.
Révisé le :
Accepté le :
Publié le :
Keywords: r-harmonic curves, helices, space form
Mot clés : Courbes r-harmonique, hélices, espaces formes
Volker Branding 1
@article{CRMATH_2024__362_G11_1521_0, author = {Volker Branding}, title = {Classification results for polyharmonic helices in space forms}, journal = {Comptes Rendus. Math\'ematique}, pages = {1521--1537}, publisher = {Acad\'emie des sciences, Paris}, volume = {362}, year = {2024}, doi = {10.5802/crmath.666}, language = {en}, }
Volker Branding. Classification results for polyharmonic helices in space forms. Comptes Rendus. Mathématique, Volume 362 (2024), pp. 1521-1537. doi : 10.5802/crmath.666. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.666/
[1] Higher order energy functionals, Adv. Math., Volume 370 (2020), 107236, 60 pages | DOI | MR | Zbl
[2] On polyharmonic helices in space forms, Arch. Math., Volume 120 (2023) no. 2, pp. 213-225 | DOI | MR | Zbl
[3] On p-biharmonic curves, J. Math. Anal. Appl., Volume 538 (2024) no. 2, 128384 | DOI | MR | Zbl
[4] Biharmonic submanifolds of , Int. J. Math., Volume 12 (2001) no. 8, pp. 867-876 | DOI | MR | Zbl
[5] Biharmonic submanifolds in spheres, Isr. J. Math., Volume 130 (2002), pp. 109-123 | DOI | MR | Zbl
[6] The Euler–Lagrange method for biharmonic curves, Mediterr. J. Math., Volume 3 (2006) no. 3-4, pp. 449-465 | DOI | MR | Zbl
[7] Invariant higher-order variational problems, Commun. Math. Phys., Volume 309 (2012) no. 2, pp. 413-458 | DOI | MR | Zbl
[8] The second variational formula of the -energy and -harmonic curves, Osaka J. Math., Volume 49 (2012) no. 4, pp. 1035-1063 | MR | Zbl
[9] Reduction methods for the bienergy, Rev. Roum. Math. Pures Appl., Volume 61 (2016) no. 4, pp. 261-292 | MR | Zbl
[10] Polyharmonic hypersurfaces into space forms, Isr. J. Math., Volume 249 (2022) no. 1, pp. 343-374 | DOI | MR | Zbl
[11] Triharmonic curves in 3-dimensional homogeneous spaces, Mediterr. J. Math., Volume 18 (2021) no. 5, 198, 17 pages | DOI | MR | Zbl
[12] A general approach to equivariant biharmonic maps, Mediterr. J. Math., Volume 10 (2013) no. 2, pp. 1127-1139 | DOI | MR | Zbl
[13] Introduction to mechanics and symmetry. A basic exposition of classical mechanical systems, Texts in Applied Mathematics, 17, Springer, 1999, xviii+582 pages | DOI | MR | Zbl
[14] The First Variation Formula for k-Harmonic Mapping, Journal of Nanchang University, Volume 13 (1989)
Cité par Sources :
Commentaires - Politique