[Formes quadratiques de dimension
For
Pour
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.668
Keywords: Quadratic forms over fields, projective homogeneous varieties, Chow rings
Mots-clés : Formes quadratiques sur des corps, variétés projectives homogènes, anneaux de Chow.
Curtis R. Harvey 1 ; Nikita A. Karpenko 1

@article{CRMATH_2024__362_G11_1539_0, author = {Curtis R. Harvey and Nikita A. Karpenko}, title = {Quadratic forms in $I^n$ of dimension $2^n+2^{n-1}$}, journal = {Comptes Rendus. Math\'ematique}, pages = {1539--1543}, publisher = {Acad\'emie des sciences, Paris}, volume = {362}, year = {2024}, doi = {10.5802/crmath.668}, zbl = {07945495}, language = {en}, }
Curtis R. Harvey; Nikita A. Karpenko. Quadratic forms in $I^n$ of dimension $2^n+2^{n-1}$. Comptes Rendus. Mathématique, Volume 362 (2024), pp. 1539-1543. doi : 10.5802/crmath.668. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.668/
[1] Quadratic forms over semilocal rings, Lecture Notes in Mathematics, 655, Springer, 1978, vi+199 pages | DOI | MR | Zbl
[2] Essential dimension: a functorial point of view (after A. Merkurjev), Doc. Math., Volume 8 (2003), pp. 279-330 | DOI | MR | Zbl
[3] Essential dimension of spinor and Clifford groups, Algebra Number Theory, Volume 8 (2014) no. 2, pp. 457-472 | DOI | MR | Zbl
[4] The algebraic and geometric theory of quadratic forms, Colloquium Publications, 56, American Mathematical Society, 2008, viii+435 pages | DOI | MR | Zbl
[5] Liaison des formes de Pfister et corps de fonctions de quadriques en caractéristique
[6] On the dimensions of anisotropic quadratic forms in
[7] On the cohomology groups of the field of rational functions, Mathematics in St. Petersburg (Amer. Math. Soc. Transl.), Volume 174, American Mathematical Society, 1996, pp. 21-44 | DOI | MR | Zbl
[8] Canonical dimension, Proceedings of the International Congress of Mathematicians. Volume II, Hindustan Book Agency (2010), pp. 146-161 | MR | Zbl
[9] Upper motives of algebraic groups and incompressibility of Severi-Brauer varieties, J. Reine Angew. Math., Volume 677 (2013), pp. 179-198 | DOI | MR | Zbl
[10] Minimal canonical dimensions of quadratic forms, Doc. Math., Volume 2015 (2015), pp. 367-385 | MR | Zbl
[11] Essential dimension: a survey, Transform. Groups, Volume 18 (2013) no. 2, pp. 415-481 | DOI | MR | Zbl
[12] Quadratische Formen in beliebigen Körpern, Invent. Math., Volume 1 (1966), pp. 116-132 | DOI | MR | Zbl
[13] Motivic Steenrod operations in characteristic
[14] Essential dimension of the spin groups in characteristic 2, Comment. Math. Helv., Volume 94 (2019) no. 1, pp. 1-20 | DOI | MR | Zbl
[15] Motives of quadrics with applications to the theory of quadratic forms, Geometric methods in the algebraic theory of quadratic forms (Lecture Notes in Mathematics), Volume 1835, Springer, 2004, pp. 25-101 | DOI | MR | Zbl
[16] On the Chow groups of quadratic Grassmannians, Doc. Math., Volume 10 (2005), pp. 111-130 | DOI | MR | Zbl
- On generic quadratic forms in a power of the fundamental ideal, European Journal of Mathematics, Volume 10 (2024) no. 4, p. 11 (Id/No 61) | DOI:10.1007/s40879-024-00773-x | Zbl:7938998
Cité par 1 document. Sources : zbMATH
Commentaires - Politique