[Contrôlabilité et stabilisabilité par rétroaction dans un cadre non uniforme]
Nous proposons une nouvelle propriété de contrôlabilité pour des systèmes de contrôle linéaires non autonomes en dimension finie : la contrôlabilité complète non uniforme, qui est à mi-chemin entre les propriétés classiques de contrôlabilité complète et la contrôlabilité complète uniforme établies par Kalman. Ce nouveau concept à un lien étroit, comme nous le prouvons, avec la propriété de croissance bornée non uniforme de la plante correspondante. En outre, il est aussi prouvé que si un système de contrôle est non uniformément complètement contrôlable et sa plante (partie non contrôlée) à la propriété de croissance bornée non uniforme, alors on a un résultat de stabilisation asymptotique par bouclage linéaire ou la convergence est non uniformément exponentielle.
We propose a new controllability property for linear nonautonomous control systems in finite dimension: the nonuniform complete controllability, which is halfway between the classical Kalman’s properties of complete controllability and uniform complete controllability. This new concept has a strong linkage, as we prove, with the property of nonuniform bounded growth for the corresponding plant. In addition, we also prove that if a control system is nonuniformly completely controllable and its plant (uncontrolled part) has the property of nonuniform bounded growth, then there exist a linear feedback control leading to a nonuniformly exponentially stable closed–loop system.
Révisé le :
Accepté le :
Publié le :
Keywords: Linear nonautonomous systems, nonuniform controllability, nonuniform exponential stabilizability, nonuniform bounded growth
Mots-clés : Systèmes linéaires non autonomes, Contrôlabilité non uniforme, Stabilité exponentielle non uniforme, Croissance bornée non uniforme
Ignacio Huerta 1 ; Pablo Monzón 2 ; Gonzalo Robledo 3
@article{CRMATH_2024__362_G12_1667_0, author = {Ignacio Huerta and Pablo Monz\'on and Gonzalo Robledo}, title = {Controllability and feedback stabilizability in a nonuniform framework}, journal = {Comptes Rendus. Math\'ematique}, pages = {1667--1692}, publisher = {Acad\'emie des sciences, Paris}, volume = {362}, year = {2024}, doi = {10.5802/crmath.672}, language = {en}, }
TY - JOUR AU - Ignacio Huerta AU - Pablo Monzón AU - Gonzalo Robledo TI - Controllability and feedback stabilizability in a nonuniform framework JO - Comptes Rendus. Mathématique PY - 2024 SP - 1667 EP - 1692 VL - 362 PB - Académie des sciences, Paris DO - 10.5802/crmath.672 LA - en ID - CRMATH_2024__362_G12_1667_0 ER -
Ignacio Huerta; Pablo Monzón; Gonzalo Robledo. Controllability and feedback stabilizability in a nonuniform framework. Comptes Rendus. Mathématique, Volume 362 (2024), pp. 1667-1692. doi : 10.5802/crmath.672. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.672/
[1] Proportional local assignability of dichotomy spectrum of one-sided continuous time-varying linear systems, J. Differ. Equations, Volume 309 (2022), pp. 176-195 | DOI | MR | Zbl
[2] Stabilizability of linear time-varying systems, Syst. Control Lett., Volume 62 (2013) no. 9, pp. 747-755 | DOI | Zbl
[3] Optimal control, linear quadratic methods, Dover Publications, 1990
[4] Uniform controllability via the limiting systems, Appl. Math. Optim., Volume 9 (1982) no. 2, pp. 111-131 | DOI | MR | Zbl
[5] Uniform complete controllability for time-varying systems, IEEE Trans. Autom. Control, Volume 12 (1967) no. 6, pp. 790-791 | DOI
[6] Necessary and sufficient conditions for assignability of dichotomy spectra of continuous time-varying linear systems, Automatica, Volume 125 (2021), 109466, 8 pages | DOI | MR | Zbl
[7] Stability of nonautonomous differential equations, Lecture Notes in Mathematics, 1926, Springer, 2008, xiv+285 pages | DOI | MR | Zbl
[8] Introduction to linear systems theory, Holt, Rinehart and Winston Inc., 1970
[9] Nonuniform dichotomy spectrum and reducibility for nonautonomous equations, Bull. Sci. Math., Volume 139 (2015) no. 5, pp. 538-557 | DOI | MR | Zbl
[10] Dichotomies in stability theory, Lecture Notes in Mathematics, 629, Springer, 1978, ii+98 pages | DOI | MR | Zbl
[11] Commande linéaire des systèmes dynamiques, Modélisation. Analyse. Simulation. Commande, Masson, 1994, xviii+245 pages (With a preface by A. Bensoussan) | MR | Zbl
[12] Stability of motion, Grundlehren der Mathematischen Wissenschaften, 138, Springer, 1967, xi+446 pages | DOI | MR | Zbl
[13] Stabilizability of systems with exponential dichotomy, Syst. Control Lett., Volume 8 (1987) no. 3, pp. 211-220 | DOI | MR | Zbl
[14] Stabilization of linear systems, SIAM J. Control, Volume 10 (1972), pp. 716-729 | DOI | MR | Zbl
[15] Contributions to the theory of optimal control, Bol. Soc. Mat. Mex., II, Volume 5 (1960), pp. 102-119 | MR | Zbl
[16] On the general theory of control systems, IFAC Proceedings Volumes, Volume 1 (1960) no. 1, pp. 491-502 | DOI | Zbl
[17] Lectures on controllability and observability, Controllability and Observability (C.I.M.E. 1st Ciclo, Sasso Marconi (Bologna), 1968) (Centro Internazionale Matematico Estivo (C.I.M.E.)), Ed. Cremonese, 1969, pp. 1-149 | MR | Zbl
[18] Nonautonomous dynamical systems, Mathematical Surveys and Monographs, 176, American Mathematical Society, 2011, viii+264 pages | DOI | MR | Zbl
[19] On the concepts of controllability and observability of linear systems, IEEE Trans. Autom. Control, Volume 9 (1964) no. 2, pp. 129-136 | DOI
[20] A generalized nonuniform contraction and Lyapunov function, Abstr. Appl. Anal, Volume 2012 (2012), 613038, 14 pages | DOI | MR | Zbl
[21] Linear systems exponential dichotomy and structure of sets of hyperbolic points, World Scientific, 2000, xii+205 pages | DOI | MR | Zbl
[22] Dichotomies and stability in nonautonomous linear systems, Stability and Control: Theory, Methods and Applications, 14, Taylor & Francis, 2003, xx+368 pages | MR | Zbl
[23] Exponential dichotomy and expansivity, Ann. Mat. Pura Appl., Volume 185 (2006), p. S171-S185 | DOI | MR | Zbl
[24] New characterization of controllability via stabilizability and Riccati equation for LTV systems, IMA J. Math. Control Inf., Volume 25 (2008) no. 4, pp. 419-429 | DOI | MR | Zbl
[25] Stability theory by Liapunov’s direct method, Applied Mathematical Sciences, 22, Springer, 1977, xii+396 pages | DOI | MR | Zbl
[26] Stabilizability of linear time-varying and uncertain linear systems, IEEE Trans. Autom. Control, Volume 33 (1988) no. 9, pp. 884-887 | DOI | Zbl
[27] Linear system theory, Prentice Hall Information and System Sciences Series, Prentice Hall, 1993, xii+356 pages | MR
[28] Controllability, observability and stability of linear systems, SIAM J. Control, Volume 6 (1968), pp. 121-130 | DOI | MR | Zbl
[29] Dichotomy spectrum for nonautonomous differential equations, J. Dyn. Differ. Equations, Volume 14 (2002) no. 1, pp. 243-258 | DOI | MR | Zbl
[30] Reducibility of nonautonomous linear differential equations, J. Lond. Math. Soc., Volume 65 (2002) no. 2, pp. 397-410 | DOI | MR | Zbl
[31] Nonuniform -dichotomy spectrum and kinematic similarity, J. Differ. Equations, Volume 375 (2023), pp. 618-652 | DOI | MR | Zbl
[32] Mathematical control theory. Deterministic finite dimensional systems., Texts in Applied Mathematics, 6, Springer, 1998 | Zbl
[33] Robust and optimal control, Prentice Hall, 1996 | Zbl
[34] Nonuniform dichotomy spectrum and normal forms for nonautonomous differential systems, J. Funct. Anal., Volume 267 (2014) no. 7, pp. 1889-1916 | DOI | MR | Zbl
[35] On asymptotic stability of linear time-varying systems, Automatica, Volume 68 (2016), pp. 266-276 | DOI | MR | Zbl
[36] Stability analysis of non-linear time-varying systems by Lyapunov functions with indefinite derivatives, IET Control Theory Appl., Volume 11 (2017) no. 9, pp. 1434-1442 | DOI | MR
[37] Lyapunov differential equations and inequalities for stability and stabilization of linear time-varying systems, Automatica, Volume 131 (2021), 109785, 11 pages | DOI | MR | Zbl
[38] Nonuniform dichotomy spectrum intervals: theorem and computation, J. Appl. Anal. Comput., Volume 9 (2019) no. 3, pp. 1102-1119 | DOI | MR | Zbl
[39] Equivalences between nonuniform exponential dichotomy and admissibility, J. Differ. Equations, Volume 262 (2017) no. 1, pp. 682-747 | DOI | MR | Zbl
Cité par Sources :
Commentaires - Politique