Comptes Rendus
Article de recherche - Systèmes dynamiques, Théorie du contrôle
Controllability and feedback stabilizability in a nonuniform framework
[Contrôlabilité et stabilisabilité par rétroaction dans un cadre non uniforme]
Comptes Rendus. Mathématique, Volume 362 (2024), pp. 1667-1692.

Nous proposons une nouvelle propriété de contrôlabilité pour des systèmes de contrôle linéaires non autonomes en dimension finie : la contrôlabilité complète non uniforme, qui est à mi-chemin entre les propriétés classiques de contrôlabilité complète et la contrôlabilité complète uniforme établies par Kalman. Ce nouveau concept à un lien étroit, comme nous le prouvons, avec la propriété de croissance bornée non uniforme de la plante correspondante. En outre, il est aussi prouvé que si un système de contrôle est non uniformément complètement contrôlable et sa plante (partie non contrôlée) à la propriété de croissance bornée non uniforme, alors on a un résultat de stabilisation asymptotique par bouclage linéaire ou la convergence est non uniformément exponentielle.

We propose a new controllability property for linear nonautonomous control systems in finite dimension: the nonuniform complete controllability, which is halfway between the classical Kalman’s properties of complete controllability and uniform complete controllability. This new concept has a strong linkage, as we prove, with the property of nonuniform bounded growth for the corresponding plant. In addition, we also prove that if a control system is nonuniformly completely controllable and its plant (uncontrolled part) has the property of nonuniform bounded growth, then there exist a linear feedback control leading to a nonuniformly exponentially stable closed–loop system.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.672
Classification : 34D05, 34D09, 93B05, 93D15
Keywords: Linear nonautonomous systems, nonuniform controllability, nonuniform exponential stabilizability, nonuniform bounded growth
Mots-clés : Systèmes linéaires non autonomes, Contrôlabilité non uniforme, Stabilité exponentielle non uniforme, Croissance bornée non uniforme

Ignacio Huerta 1 ; Pablo Monzón 2 ; Gonzalo Robledo 3

1 Departamento de Matemática, Universidad Técnica Federico Santa María, Casilla 110-V, Valparaíso, Chile
2 Facultad de Ingeniería – Universidad de la República, Julio Herrera y Reissig 565, Montevideo, Uruguay
3 Departamento de Matemáticas – Universidad de Chile, Casilla 653, Las Palmeras 3425, Ñuñoa – Santiago, Chile
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2024__362_G12_1667_0,
     author = {Ignacio Huerta and Pablo Monz\'on and Gonzalo Robledo},
     title = {Controllability and feedback stabilizability in a nonuniform framework},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1667--1692},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {362},
     year = {2024},
     doi = {10.5802/crmath.672},
     language = {en},
}
TY  - JOUR
AU  - Ignacio Huerta
AU  - Pablo Monzón
AU  - Gonzalo Robledo
TI  - Controllability and feedback stabilizability in a nonuniform framework
JO  - Comptes Rendus. Mathématique
PY  - 2024
SP  - 1667
EP  - 1692
VL  - 362
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.672
LA  - en
ID  - CRMATH_2024__362_G12_1667_0
ER  - 
%0 Journal Article
%A Ignacio Huerta
%A Pablo Monzón
%A Gonzalo Robledo
%T Controllability and feedback stabilizability in a nonuniform framework
%J Comptes Rendus. Mathématique
%D 2024
%P 1667-1692
%V 362
%I Académie des sciences, Paris
%R 10.5802/crmath.672
%G en
%F CRMATH_2024__362_G12_1667_0
Ignacio Huerta; Pablo Monzón; Gonzalo Robledo. Controllability and feedback stabilizability in a nonuniform framework. Comptes Rendus. Mathématique, Volume 362 (2024), pp. 1667-1692. doi : 10.5802/crmath.672. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.672/

[1] Pham The Anh; Adam Czornik; Thai Son Doan; Stefan Siegmund Proportional local assignability of dichotomy spectrum of one-sided continuous time-varying linear systems, J. Differ. Equations, Volume 309 (2022), pp. 176-195 | DOI | MR | Zbl

[2] Brian D. O. Anderson; Achim Ilchmann; Fabian R. Wirth Stabilizability of linear time-varying systems, Syst. Control Lett., Volume 62 (2013) no. 9, pp. 747-755 | DOI | Zbl

[3] Brian D. O. Anderson; John B. Moore Optimal control, linear quadratic methods, Dover Publications, 1990

[4] Zvi Artstein Uniform controllability via the limiting systems, Appl. Math. Optim., Volume 9 (1982) no. 2, pp. 111-131 | DOI | MR | Zbl

[5] Brian D. O. Anderson; L. M. Silverman Uniform complete controllability for time-varying systems, IEEE Trans. Autom. Control, Volume 12 (1967) no. 6, pp. 790-791 | DOI

[6] Artur Babiarz; Le Viet Cuong; Adam Czornik; Thai Son Doan Necessary and sufficient conditions for assignability of dichotomy spectra of continuous time-varying linear systems, Automatica, Volume 125 (2021), 109466, 8 pages | DOI | MR | Zbl

[7] Luis Barreira; Claudia Valls Stability of nonautonomous differential equations, Lecture Notes in Mathematics, 1926, Springer, 2008, xiv+285 pages | DOI | MR | Zbl

[8] C. T. Chen Introduction to linear systems theory, Holt, Rinehart and Winston Inc., 1970

[9] Jifeng Chu; Fang-Fang Liao; Stefan Siegmund; Yonghui Xia; Weinian Zhang Nonuniform dichotomy spectrum and reducibility for nonautonomous equations, Bull. Sci. Math., Volume 139 (2015) no. 5, pp. 538-557 | DOI | MR | Zbl

[10] W. A. Coppel Dichotomies in stability theory, Lecture Notes in Mathematics, 629, Springer, 1978, ii+98 pages | DOI | MR | Zbl

[11] B. d’Andréa-Novel; M. Cohen de Lara Commande linéaire des systèmes dynamiques, Modélisation. Analyse. Simulation. Commande, Masson, 1994, xviii+245 pages (With a preface by A. Bensoussan) | MR | Zbl

[12] Wolfgang Hahn Stability of motion, Grundlehren der Mathematischen Wissenschaften, 138, Springer, 1967, xi+446 pages | DOI | MR | Zbl

[13] Achim Ilchmann; Günter Kern Stabilizability of systems with exponential dichotomy, Syst. Control Lett., Volume 8 (1987) no. 3, pp. 211-220 | DOI | MR | Zbl

[14] Masao Ikeda; Hajime Maeda; Shinzo Kodama Stabilization of linear systems, SIAM J. Control, Volume 10 (1972), pp. 716-729 | DOI | MR | Zbl

[15] R. E. Kalman Contributions to the theory of optimal control, Bol. Soc. Mat. Mex., II, Volume 5 (1960), pp. 102-119 | MR | Zbl

[16] R. E. Kalman On the general theory of control systems, IFAC Proceedings Volumes, Volume 1 (1960) no. 1, pp. 491-502 | DOI | Zbl

[17] R. E. Kalman Lectures on controllability and observability, Controllability and Observability (C.I.M.E. 1st Ciclo, Sasso Marconi (Bologna), 1968) (Centro Internazionale Matematico Estivo (C.I.M.E.)), Ed. Cremonese, 1969, pp. 1-149 | MR | Zbl

[18] Peter E. Kloeden; Martin Rasmussen Nonautonomous dynamical systems, Mathematical Surveys and Monographs, 176, American Mathematical Society, 2011, viii+264 pages | DOI | MR | Zbl

[19] E. Kreindler; P. Sarachik On the concepts of controllability and observability of linear systems, IEEE Trans. Autom. Control, Volume 9 (1964) no. 2, pp. 129-136 | DOI

[20] Fang-Fang Liao; Yongxin Jiang; Zhiting Xie A generalized nonuniform contraction and Lyapunov function, Abstr. Appl. Anal, Volume 2012 (2012), 613038, 14 pages | DOI | MR | Zbl

[21] Zhensheng Lin; Yan-Xia Lin Linear systems exponential dichotomy and structure of sets of hyperbolic points, World Scientific, 2000, xii+205 pages | DOI | MR | Zbl

[22] Yu. A. Mitropolsky; A. M. Samoilenko; V. L. Kulik Dichotomies and stability in nonautonomous linear systems, Stability and Control: Theory, Methods and Applications, 14, Taylor & Francis, 2003, xx+368 pages | MR | Zbl

[23] Kenneth J. Palmer Exponential dichotomy and expansivity, Ann. Mat. Pura Appl., Volume 185 (2006), p. S171-S185 | DOI | MR | Zbl

[24] V. N. Phat; Q. P. Ha New characterization of controllability via stabilizability and Riccati equation for LTV systems, IMA J. Math. Control Inf., Volume 25 (2008) no. 4, pp. 419-429 | DOI | MR | Zbl

[25] Nicolas Rouche; P. Habets; M. Laloy Stability theory by Liapunov’s direct method, Applied Mathematical Sciences, 22, Springer, 1977, xii+396 pages | DOI | MR | Zbl

[26] M. A. Rotea; P. P. Khargonekar Stabilizability of linear time-varying and uncertain linear systems, IEEE Trans. Autom. Control, Volume 33 (1988) no. 9, pp. 884-887 | DOI | Zbl

[27] Wilson J. Rugh Linear system theory, Prentice Hall Information and System Sciences Series, Prentice Hall, 1993, xii+356 pages | MR

[28] L. M. Silverman; Brian D. O. Anderson Controllability, observability and stability of linear systems, SIAM J. Control, Volume 6 (1968), pp. 121-130 | DOI | MR | Zbl

[29] Stefan Siegmund Dichotomy spectrum for nonautonomous differential equations, J. Dyn. Differ. Equations, Volume 14 (2002) no. 1, pp. 243-258 | DOI | MR | Zbl

[30] Stefan Siegmund Reducibility of nonautonomous linear differential equations, J. Lond. Math. Soc., Volume 65 (2002) no. 2, pp. 397-410 | DOI | MR | Zbl

[31] César M. Silva Nonuniform μ-dichotomy spectrum and kinematic similarity, J. Differ. Equations, Volume 375 (2023), pp. 618-652 | DOI | MR | Zbl

[32] Eduardo D. Sontag Mathematical control theory. Deterministic finite dimensional systems., Texts in Applied Mathematics, 6, Springer, 1998 | Zbl

[33] Kemin Zhou; John C. Doyle; Keith Glover Robust and optimal control, Prentice Hall, 1996 | Zbl

[34] Xiang Zhang Nonuniform dichotomy spectrum and normal forms for nonautonomous differential systems, J. Funct. Anal., Volume 267 (2014) no. 7, pp. 1889-1916 | DOI | MR | Zbl

[35] Bin Zhou On asymptotic stability of linear time-varying systems, Automatica, Volume 68 (2016), pp. 266-276 | DOI | MR | Zbl

[36] Bin Zhou Stability analysis of non-linear time-varying systems by Lyapunov functions with indefinite derivatives, IET Control Theory Appl., Volume 11 (2017) no. 9, pp. 1434-1442 | DOI | MR

[37] Bin Zhou Lyapunov differential equations and inequalities for stability and stabilization of linear time-varying systems, Automatica, Volume 131 (2021), 109785, 11 pages | DOI | MR | Zbl

[38] Hailong Zhu; Zhaoxiang Li Nonuniform dichotomy spectrum intervals: theorem and computation, J. Appl. Anal. Comput., Volume 9 (2019) no. 3, pp. 1102-1119 | DOI | MR | Zbl

[39] Linfeng Zhou; Kening Lu; Weinian Zhang Equivalences between nonuniform exponential dichotomy and admissibility, J. Differ. Equations, Volume 262 (2017) no. 1, pp. 682-747 | DOI | MR | Zbl

Cité par Sources :

Commentaires - Politique