[Revoir la commande par platitude : la méthode HEOL]
On présente les fondations algébriques de la méthode HEOL qui combine commande par platitude et bouclage intelligent, c’est-à-dire deux avancées de l’automatique ayant fait leur preuve en pratique, y compris industrielle. On résoud ainsi plusieurs questions pendantes sur les bouclages à propos de la platitude et de la commande sans modèle. Théorie élémentaire des modules, corps différentiels ordinaires, et la généralisation à ces corps des différentielles de Kähler permettent une définition intrinsèque du système linéaire tangent. Les manipulations algébriques associées au calcul opérationnel conduisent à l’homéostat et aux correcteurs intelligents, illustrés par simulations numériques.
We present the algebraic foundations of the HEOL setting, which combines flatness-based control and intelligent controllers, two advances in automatic control that have been proven in practice, including in industry. The result provides a solution to many pending questions on feedback loops concerning flatness-based control and model-free control (MFC). Elementary module theory, ordinary differential fields and the generalization of Kähler differentials to differential fields provide an intrinsic definition of the tangent linear system. The algebraic manipulations associated with the operational calculus lead to homeostat and intelligent controllers. They are illustrated via some computer simulations.
Accepté le :
Publié le :
Keywords: Flatness-based control, model-free control, intelligent controllers, differential algebra, module theory
Mots-clés : Commande par platitude, commande sans modèle, contrôleurs intelligents, algèbre différentielle, théorie des modules
Cédric Join 1, 2 ; Emmanuel Delaleau 3 ; Michel Fliess 4, 2
@article{CRMATH_2024__362_G12_1693_0, author = {C\'edric Join and Emmanuel Delaleau and Michel Fliess}, title = {Flatness-based control revisited: {The} {\protect\emph{HEOL}} setting}, journal = {Comptes Rendus. Math\'ematique}, pages = {1693--1706}, publisher = {Acad\'emie des sciences, Paris}, volume = {362}, year = {2024}, doi = {10.5802/crmath.674}, language = {en}, }
TY - JOUR AU - Cédric Join AU - Emmanuel Delaleau AU - Michel Fliess TI - Flatness-based control revisited: The HEOL setting JO - Comptes Rendus. Mathématique PY - 2024 SP - 1693 EP - 1706 VL - 362 PB - Académie des sciences, Paris DO - 10.5802/crmath.674 LA - en ID - CRMATH_2024__362_G12_1693_0 ER -
Cédric Join; Emmanuel Delaleau; Michel Fliess. Flatness-based control revisited: The HEOL setting. Comptes Rendus. Mathématique, Volume 362 (2024), pp. 1693-1706. doi : 10.5802/crmath.674. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.674/
[1] Model-free predictive control for improved performance and robustness of three-phase quasi -source inverters, IEEE Access, Volume 12 (2024), pp. 87850-87863 | DOI
[2] A data-driven, distributed game-theoretic transactional control approach for hierarchical demand response, IEEE Access, Volume 10 (2022), pp. 72279-72289 | DOI
[3] Lateral control for autonomous vehicles: A comparative evaluation, Contr. Engin. Pract., Volume 57 (2024), 100910 | DOI
[4] Design for a Brain, Chapman & Hall, 1960 | DOI | Zbl
[5] Online implementation of model free controller for oxygen stoichiometry and pressure difference control of polymer electrolyte fuel cell, Int. J. Hydrog. Energy, Volume 47 (2022) no. 90, pp. 38311-38326 | DOI
[6] The industrial control of tower cranes: An operator-in-the-loop approach, IEEE Control Sys. Mag., Volume 40 (2020) no. 5, pp. 27-39 | DOI
[7] Optimal control of differentially flat systems is surprisingly easy, Automatica, Volume 159 (2024), 11 pages | DOI | MR | Zbl
[8] Algèbre. Chap. 1 à 3, Hermann, 1970 (English translation: Algebra I, Chap. 1–3, Hermann, Paris & Addison-Wesley, Reading, MA, 1974) | Zbl
[9] Intelligent PID control of an industrial electro-hydraulic system, ISA Trans., Volume 139 (2023), pp. 484-498 | DOI
[10] Dynamic feedback linearization of control systems with symmetry, SIGMA, Symmetry Integrability Geom. Methods Appl., Volume 20 (2024), 058, 49 pages | DOI | MR | Zbl
[11] Sufficient conditions for dynamic state feedback linearization, SIAM J. Control Optim., Volume 29 (1991) no. 1, pp. 38-57 | DOI | MR | Zbl
[12] Free rings and their relations, London Mathematical Society Monographs, 19, Academic Press Inc., 1985 | MR | Zbl
[13] Model-free control applied to a direct injection system: Experimental validation, Fuel, Volume 358 (2024), 130071 | DOI
[14] Robust model-free fault-tolerant predictive control for PMSM drive system, IEEE Access, Volume 12 (2024), pp. 8502-8512 | DOI
[15] Control of flat systems by quasi-static feedback of generalized states, Int. J. Control, Volume 71 (1998) no. 5, pp. 745-765 | DOI | MR | Zbl
[16] Commutative algebra. With a view toward algebraic geometry, Graduate Texts in Mathematics, 150, Springer, 1995 | Zbl
[17] Model-free control, Int. J. Control, Volume 86 (2013) no. 12, pp. 2228-2252 | DOI | MR | Zbl
[18] An alternative to proportional-integral and proportional-integral-derivative regulators: intelligent proportional-derivative regulators, Int. J. Robust Nonlinear Control, Volume 32 (2022) no. 18, pp. 9512-9524 | DOI | MR | Zbl
[19] Toward simple in silico experiments for drugs administration in some cancer treatments, IFAC-PapersOnLine, Volume 54 (2021) no. 15, pp. 245-250 | DOI
[20] Some basic structural properties of generalized linear systems, Syst. Control Lett., Volume 15 (1990) no. 5, pp. 391-396 | DOI | MR | Zbl
[21] Sur les systèmes non linéaires différentiellement plats, C. R. Math. Acad. Sci. Paris, Volume 315 (1992) no. 5, pp. 619-624 | MR | Zbl
[22] Flatness and defect of non-linear systems: introductory theory and examples, Int. J. Control, Volume 61 (1995) no. 6, pp. 1327-1361 | DOI | MR | Zbl
[23] Deux applications de la géométrie locale des diffiétés, Ann. Inst. Henri Poincaré, Phys. Théor., Volume 66 (1997) no. 3, pp. 275-292 | Numdam | MR | Zbl
[24] A Lie-Bäcklund approach to equivalence and flatness of nonlinear systems, IEEE Trans. Autom. Control, Volume 44 (1999) no. 5, pp. 922-937 | DOI | MR | Zbl
[25] Generalized state variable representation for a simplified crane description, Int. J. Control, Volume 58 (1993) no. 2, pp. 277-283 | DOI | MR | Zbl
[26] An algebraic framework for linear identification, ESAIM, Control Optim. Calc. Var., Volume 9 (2003), pp. 151-168 | DOI | Numdam | MR | Zbl
[27] Closed-loop Parametric Identification for Continuous-time Linear Systems via New Algebraic Techniques, Identification of Continuous-time Models from Sampled Data (Hugues Garnier; Liuping Wang, eds.), Springer, 2008, pp. 363-391 | DOI
[28] Shortcuts to adiabaticity: concepts, methods, and applications, Rev. Mod. Phys., Volume 91 (2019) no. 4, 045001, 54 pages | DOI | MR
[29] Exact feedforward linearization based on differential flatness, Int. J. Control, Volume 76 (2003) no. 6, pp. 537-556 | DOI | MR | Zbl
[30] Robustness analysis of exact feedforward linearization based on differential flatness, Automatica, Volume 39 (2003) no. 11, pp. 1941-1946 | DOI | MR | Zbl
[31] Implementation and design of ultra-local model-based control strategy for autonomous vehicles, Vehicle System Dynamics, Volume 62 (2024) no. 6, pp. 1541-1564 | DOI
[32] Über den Begriff der Klasse von Differentialgleichungen, Math. Ann., Volume 73 (1912) no. 1, pp. 95-108 | DOI | MR | Zbl
[33] Model-free based control of a gripper actuated by pneumatic muscles, Mechatronics, Volume 95 (2023), 103053 | DOI
[34] Global transformations of nonlinear systems, IEEE Trans. Autom. Control, Volume 28 (1983) no. 1, pp. 24-31 | DOI | MR | Zbl
[35] Trajectory tracking of two-stage anaerobic digestion process: A predictive control with guaranteed performance and saturated input, based on ultra-local model, J. Process Control, Volume 129 (2023), 103039 | DOI
[36] An -variable model-free prescribed-time control for nonlinear system with uncertainties and disturbances, Int. J. Robust Nonlinear Control, Volume 32 (2022) no. 9, pp. 5673-5693 | DOI | MR | Zbl
[37] Model-free super-twisting terminal sliding mode controller using sliding mode disturbance observer for n-DOF upper-limb rehabilitation exoskeleton with backlash hysteresis, Int. J. Control, Volume 97 (2024) no. 4, pp. 756-772 | DOI | MR | Zbl
[38] Toward more realistic social distancing policies via advanced feedback control, Automation, Volume 3 (2022) no. 2, pp. 286-301 | DOI
[39] The Euler-Lagrange equation in optimal control: Preliminary results, 12 Internat. Conf. Systems Control, Batna, Algeria, 2024
[40] Kähler differentials and differential algebra, Ann. Math., Volume 89 (1969), pp. 92-98 | DOI | MR | Zbl
[41] On linearization of control systems, Bull. Pol. Acad. Sci., Math., Volume 28 (1980) no. 9-10, pp. 517-522 | MR | Zbl
[42] Topics in mathematical system theory, McGraw-Hill, 1969 | MR | Zbl
[43] Intrinsic and apparent singularities in differentially flat systems, and application to global motion planning, Syst. Control Lett., Volume 113 (2018), pp. 117-124 | DOI | MR | Zbl
[44] On singularities of flat affine systems with states and controls, Int. J. Robust Nonlinear Control, Volume 30 (2020) no. 9, pp. 3547-3565 | DOI | MR | Zbl
[45] Differential algebra and algebraic groups, Pure and Applied Mathematics, 54, Academic Press Inc., 1973 | MR | Zbl
[46] Selected works of Ellis Kolchin with commentary (Hyman Bass; Alexandru Buium; Phyllis J. Cassidy, eds.), American Mathematical Society, 1999 | Zbl
[47] Model-free based adaptive finite time control with multilayer perceptron neural network estimation for a 10 DOF lower limb exoskeleton, Int. J. Adapt. Control Signal Process., Volume 38 (2024) no. 2, pp. 696-730 | DOI | MR
[48] A model-free control strategy for an experimental greenhouse with an application to fault accommodation, Comput. Electron. Agric., Volume 110 (2015), pp. 139-149 | DOI
[49] A framework to develop and test a model-free motion control system for a forestry crane, Biomimetic Intell. Robot., Volume 3 (2023) no. 4, 100133 | DOI
[50] Controller design automation for power electronics: A model-free approach, IEEE Trans. Power Electron., Volume 39 (2024) no. 2, pp. 2155-2168 | DOI
[51] Analysis and control of nonlinear systems. A flatness-based approach, Mathematical Engineering, Springer, 2009 | DOI | MR | Zbl
[52] Speed-Adaptive Model-Free Path-Tracking Control for Autonomous Vehicles: Analysis and Design, Vehicles, Volume 5 (2023) no. 2, pp. 698-717 | DOI
[53] Ein szenarienadaptiver Bewegungsalgorithmus für die Längsbewegung eines vollbeweglichen Fahrsimulators, Springer, 2020 | DOI
[54] Active queue management for alleviating Internet congestion via a nonlinear differential equation with a variable delay, Annu. Rev. Control, Volume 55 (2023), pp. 61-69 | DOI
[55] A Novel Lift Controller for a Wind Turbine Blade Section Using an Active Flow Control Device Including Saturations: Experimental Results, IEEE Trans. Autom. Control, Volume 32 (2024) no. 5, pp. 1590-1601 | DOI
[56] Geometry and flatness of -crane systems, Bull. Pol. Acad. Sci., Tech. Sci., Volume 67 (2019) no. 5, pp. 893-903 | DOI
[57] Nonlinear control and filtering using differential flatness approaches. Applications to electromechanical systems, Studies in Systems, Decision and Control, 25, Springer, 2015 | DOI | MR | Zbl
[58] Flatness-Based Control, Berichte aus der Steuerungs- und Regelungstechnik, Shaker Verlag, 2021
[59] Basic notions of algebra. Transl. from the Russian, Springer, 1997 | MR | Zbl
[60] Position Control of a Fully Constrained Planar Cable-Driven Parallel Robot With Unknown or Partially Known Dynamics, IEEE/ASME Trans. Mechatronics, Volume 28 (2023) no. 3, pp. 1605-1615 | DOI
[61] Combining model-based and model-free approaches for the control of an electro-hydraulic system, Contr. Engin. Pract., Volume 133 (2023), 105453 | DOI
[62] Differentially flat systems., Control Engineering, 17, Marcel Dekker, 2004 | DOI | Zbl
[63] Algebraic identification and estimation methods in feedback control systems, Wiley Series in Dynamics and Control of Electromechanical Systems, John Wiley & Sons, 2014 | DOI | Zbl
[64] A comparison of control techniques for robust docking maneuvers of an AGV, IEEE Trans. Control Sys. Technol., Volume 20 (2012) no. 4, pp. 1116-1123 | DOI
[65] Prescribed performance model-free hybrid force/position control for 3-DOF SEA-based manipulator under partial state constraints, J. Franklin Inst., Volume 361 (2024) no. 10, 106944, 15 pages | DOI | MR | Zbl
[66] Ground vehicle lane-keeping assistance system via differential flatness output feedback control and algebraic derivative estimation, Contr. Engin. Pract., Volume 137 (2023), 105576 | DOI
[67] Approximate optimal condition model-free predictive velocity control of a direct-drive wave energy converter based on ultra-local model, Ocean Eng., Volume 307 (2024), 118214 | DOI
[68] Operational calculus. A theory of hyperfunctions. Transl. from the Japanese, Applied Mathematical Sciences, 55, Springer, 1984 | DOI | MR | Zbl
[69] Model-Free Predictive Current Control of a PWM Rectifier Based on Space Vector Modulation Under Unbalanced and Distorted Grid Conditions, IEEE J. Emerg. Sel. Top. Power Electron., Volume 10 (2022) no. 2, pp. 2319-2329 | DOI
[70] An improved deadbeat predictive current control of PMSM drives based on the ultra-local model, Chin. J. Electr. Eng., Volume 9 (2023) no. 2, pp. 27-37 | DOI
Cité par Sources :
Commentaires - Politique