Comptes Rendus
Article de recherche - Théorie du contrôle
Flatness-based control revisited: The HEOL setting
[Revoir la commande par platitude : la méthode HEOL]
Comptes Rendus. Mathématique, Volume 362 (2024), pp. 1693-1706.

On présente les fondations algébriques de la méthode HEOL qui combine commande par platitude et bouclage intelligent, c’est-à-dire deux avancées de l’automatique ayant fait leur preuve en pratique, y compris industrielle. On résoud ainsi plusieurs questions pendantes sur les bouclages à propos de la platitude et de la commande sans modèle. Théorie élémentaire des modules, corps différentiels ordinaires, et la généralisation à ces corps des différentielles de Kähler permettent une définition intrinsèque du système linéaire tangent. Les manipulations algébriques associées au calcul opérationnel conduisent à l’homéostat et aux correcteurs intelligents, illustrés par simulations numériques.

We present the algebraic foundations of the HEOL setting, which combines flatness-based control and intelligent controllers, two advances in automatic control that have been proven in practice, including in industry. The result provides a solution to many pending questions on feedback loops concerning flatness-based control and model-free control (MFC). Elementary module theory, ordinary differential fields and the generalization of Kähler differentials to differential fields provide an intrinsic definition of the tangent linear system. The algebraic manipulations associated with the operational calculus lead to homeostat and intelligent controllers. They are illustrated via some computer simulations.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.674
Classification : 93B25, 93B52, 93C15
Keywords: Flatness-based control, model-free control, intelligent controllers, differential algebra, module theory
Mots-clés : Commande par platitude, commande sans modèle, contrôleurs intelligents, algèbre différentielle, théorie des modules

Cédric Join 1, 2 ; Emmanuel Delaleau 3 ; Michel Fliess 4, 2

1 CRAN (CNRS, UMR 7039), Université de Lorraine, Campus Aiguillettes, BP 70239, 54506 Vandœuvre-lès-Nancy, France
2 AL.I.E.N., 7 rue Maurice Barrès, 54330 Vézelise, France
3 ENI Brest, UMR CNRS 6027, IRDL, 29200 Brest, France
4 LIX (CNRS, UMR 7161), École polytechnique, 91128 Palaiseau, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2024__362_G12_1693_0,
     author = {C\'edric Join and Emmanuel Delaleau and Michel Fliess},
     title = {Flatness-based control revisited: {The} {\protect\emph{HEOL}} setting},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1693--1706},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {362},
     year = {2024},
     doi = {10.5802/crmath.674},
     language = {en},
}
TY  - JOUR
AU  - Cédric Join
AU  - Emmanuel Delaleau
AU  - Michel Fliess
TI  - Flatness-based control revisited: The HEOL setting
JO  - Comptes Rendus. Mathématique
PY  - 2024
SP  - 1693
EP  - 1706
VL  - 362
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.674
LA  - en
ID  - CRMATH_2024__362_G12_1693_0
ER  - 
%0 Journal Article
%A Cédric Join
%A Emmanuel Delaleau
%A Michel Fliess
%T Flatness-based control revisited: The HEOL setting
%J Comptes Rendus. Mathématique
%D 2024
%P 1693-1706
%V 362
%I Académie des sciences, Paris
%R 10.5802/crmath.674
%G en
%F CRMATH_2024__362_G12_1693_0
Cédric Join; Emmanuel Delaleau; Michel Fliess. Flatness-based control revisited: The HEOL setting. Comptes Rendus. Mathématique, Volume 362 (2024), pp. 1693-1706. doi : 10.5802/crmath.674. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.674/

[1] A. Abid; A. Bakeer; H. Albalwi; M. Bouzidi; A. Lashab; A. Chub; S. A. Zaid Model-free predictive control for improved performance and robustness of three-phase quasi Z-source inverters, IEEE Access, Volume 12 (2024), pp. 87850-87863 | DOI

[2] K. Amasyali; Y. Chen; M. Olama A data-driven, distributed game-theoretic transactional control approach for hierarchical demand response, IEEE Access, Volume 10 (2022), pp. 72279-72289 | DOI

[3] A. Artuñedo; M. Moreno-Gonzalez; J. Villagra Lateral control for autonomous vehicles: A comparative evaluation, Contr. Engin. Pract., Volume 57 (2024), 100910 | DOI

[4] W. R. Ashby Design for a Brain, Chapman & Hall, 1960 | DOI | Zbl

[5] M. Ait Ziane; M. C. Pera; C. Join; M. Benne; J. P. Chabriat; N. Yousfi Steiner; C. Damour Online implementation of model free controller for oxygen stoichiometry and pressure difference control of polymer electrolyte fuel cell, Int. J. Hydrog. Energy, Volume 47 (2022) no. 90, pp. 38311-38326 | DOI

[6] S. Bonnabel; X. Clayes The industrial control of tower cranes: An operator-in-the-loop approach, IEEE Control Sys. Mag., Volume 40 (2020) no. 5, pp. 27-39 | DOI

[7] Logan E. Beaver; Andreas A. Malikopoulos Optimal control of differentially flat systems is surprisingly easy, Automatica, Volume 159 (2024), 11 pages | DOI | MR | Zbl

[8] N. Bourbaki Algèbre. Chap. 1 à 3, Hermann, 1970 (English translation: Algebra I, Chap. 1–3, Hermann, Paris & Addison-Wesley, Reading, MA, 1974) | Zbl

[9] M. Y. Coskun; M. Itik Intelligent PID control of an industrial electro-hydraulic system, ISA Trans., Volume 139 (2023), pp. 484-498 | DOI

[10] Jeanne N. Clelland; Taylor J. Klotz; Peter J. Vassiliou Dynamic feedback linearization of control systems with symmetry, SIGMA, Symmetry Integrability Geom. Methods Appl., Volume 20 (2024), 058, 49 pages | DOI | MR | Zbl

[11] B. Charlet; J. Lévine; R. Marino Sufficient conditions for dynamic state feedback linearization, SIAM J. Control Optim., Volume 29 (1991) no. 1, pp. 38-57 | DOI | MR | Zbl

[12] P. M. Cohn Free rings and their relations, London Mathematical Society Monographs, 19, Academic Press Inc., 1985 | MR | Zbl

[13] A. D. Carvalho; B. S. Pereira; B. A. Angélico; A. A. M. Laganá; J. F. Justo Model-free control applied to a direct injection system: Experimental validation, Fuel, Volume 358 (2024), 130071 | DOI

[14] S. Cheng; R. Zhou; Z. Li; Z. Xi; J. Zhao; K. Zhao; C. Xiang Robust model-free fault-tolerant predictive control for PMSM drive system, IEEE Access, Volume 12 (2024), pp. 8502-8512 | DOI

[15] E. Delaleau; J. Rudolph Control of flat systems by quasi-static feedback of generalized states, Int. J. Control, Volume 71 (1998) no. 5, pp. 745-765 | DOI | MR | Zbl

[16] David Eisenbud Commutative algebra. With a view toward algebraic geometry, Graduate Texts in Mathematics, 150, Springer, 1995 | Zbl

[17] Michel Fliess; Cédric Join Model-free control, Int. J. Control, Volume 86 (2013) no. 12, pp. 2228-2252 | DOI | MR | Zbl

[18] Michel Fliess; Cédric Join An alternative to proportional-integral and proportional-integral-derivative regulators: intelligent proportional-derivative regulators, Int. J. Robust Nonlinear Control, Volume 32 (2022) no. 18, pp. 9512-9524 | DOI | MR | Zbl

[19] Michel Fliess; Cédric Join; K. Moussa; S. M. Djouadi; M. W. Alsager Toward simple in silico experiments for drugs administration in some cancer treatments, IFAC-PapersOnLine, Volume 54 (2021) no. 15, pp. 245-250 | DOI

[20] Michel Fliess Some basic structural properties of generalized linear systems, Syst. Control Lett., Volume 15 (1990) no. 5, pp. 391-396 | DOI | MR | Zbl

[21] Michel Fliess; J. Lévine; Philippe Martin; Pierre Rouchon Sur les systèmes non linéaires différentiellement plats, C. R. Math. Acad. Sci. Paris, Volume 315 (1992) no. 5, pp. 619-624 | MR | Zbl

[22] Michel Fliess; Jean Lévine; Philippe Martin; Pierre Rouchon Flatness and defect of non-linear systems: introductory theory and examples, Int. J. Control, Volume 61 (1995) no. 6, pp. 1327-1361 | DOI | MR | Zbl

[23] Michel Fliess; Jean Lévine; Philippe Martin; Pierre Rouchon Deux applications de la géométrie locale des diffiétés, Ann. Inst. Henri Poincaré, Phys. Théor., Volume 66 (1997) no. 3, pp. 275-292 | Numdam | MR | Zbl

[24] Michel Fliess; Jean Lévine; Philippe Martin; Pierre Rouchon A Lie-Bäcklund approach to equivalence and flatness of nonlinear systems, IEEE Trans. Autom. Control, Volume 44 (1999) no. 5, pp. 922-937 | DOI | MR | Zbl

[25] Michel Fliess; Jean Lévine; Pierre Rouchon Generalized state variable representation for a simplified crane description, Int. J. Control, Volume 58 (1993) no. 2, pp. 277-283 | DOI | MR | Zbl

[26] Michel Fliess; Hebertt Sira-Ramírez An algebraic framework for linear identification, ESAIM, Control Optim. Calc. Var., Volume 9 (2003), pp. 151-168 | DOI | Numdam | MR | Zbl

[27] Michel Fliess; Hebertt Sira-Ramírez Closed-loop Parametric Identification for Continuous-time Linear Systems via New Algebraic Techniques, Identification of Continuous-time Models from Sampled Data (Hugues Garnier; Liuping Wang, eds.), Springer, 2008, pp. 363-391 | DOI

[28] D. Guéry-Odelin; A. Ruschhaupt; A. Kiely; E. Torrontegui; S. Martínez-Garaot; J. G. Muga Shortcuts to adiabaticity: concepts, methods, and applications, Rev. Mod. Phys., Volume 91 (2019) no. 4, 045001, 54 pages | DOI | MR

[29] Veit Hagenmeyer; Emmanuel Delaleau Exact feedforward linearization based on differential flatness, Int. J. Control, Volume 76 (2003) no. 6, pp. 537-556 | DOI | MR | Zbl

[30] Veit Hagenmeyer; Emmanuel Delaleau Robustness analysis of exact feedforward linearization based on differential flatness, Automatica, Volume 39 (2003) no. 11, pp. 1941-1946 | DOI | MR | Zbl

[31] T. Hegedüs; D. Fényes; Z. Szabó; B. Németh; L. Lukács; R. Csikja; P. Gáspár Implementation and design of ultra-local model-based control strategy for autonomous vehicles, Vehicle System Dynamics, Volume 62 (2024) no. 6, pp. 1541-1564 | DOI

[32] David Hilbert Über den Begriff der Klasse von Differentialgleichungen, Math. Ann., Volume 73 (1912) no. 1, pp. 95-108 | DOI | MR | Zbl

[33] P. Hamon; L. Michel; F. Plestan; D. Chablat Model-free based control of a gripper actuated by pneumatic muscles, Mechatronics, Volume 95 (2023), 103053 | DOI

[34] L. R. Hunt; Ren Jeng Su; George Meyer Global transformations of nonlinear systems, IEEE Trans. Autom. Control, Volume 28 (1983) no. 1, pp. 24-31 | DOI | MR | Zbl

[35] D. He; H. Wang; Y. Tian; N. Christov; I. Simeonov Trajectory tracking of two-stage anaerobic digestion process: A predictive control with guaranteed performance and saturated input, based on ultra-local model, J. Process Control, Volume 129 (2023), 103039 | DOI

[36] Dingxin He; Haoping Wang; Yang Tian An α-variable model-free prescribed-time control for nonlinear system with uncertainties and disturbances, Int. J. Robust Nonlinear Control, Volume 32 (2022) no. 9, pp. 5673-5693 | DOI | MR | Zbl

[37] Dingxin He; Haoping Wang; Yang Tian Model-free super-twisting terminal sliding mode controller using sliding mode disturbance observer for n-DOF upper-limb rehabilitation exoskeleton with backlash hysteresis, Int. J. Control, Volume 97 (2024) no. 4, pp. 756-772 | DOI | MR | Zbl

[38] C. Join; A. d’Onofrio; M. Fliess Toward more realistic social distancing policies via advanced feedback control, Automation, Volume 3 (2022) no. 2, pp. 286-301 | DOI

[39] C. Join; E. Delaleau; M. Fliess The Euler-Lagrange equation in optimal control: Preliminary results, 12 th Internat. Conf. Systems Control, Batna, Algeria, 2024

[40] Joseph Johnson Kähler differentials and differential algebra, Ann. Math., Volume 89 (1969), pp. 92-98 | DOI | MR | Zbl

[41] Bronisł aw Jakubczyk; Witold Respondek On linearization of control systems, Bull. Pol. Acad. Sci., Math., Volume 28 (1980) no. 9-10, pp. 517-522 | MR | Zbl

[42] R. E. Kalman; P. L. Falb; M. A. Arbib Topics in mathematical system theory, McGraw-Hill, 1969 | MR | Zbl

[43] Yirmeyahu J. Kaminski; Jean Lévine; François Ollivier Intrinsic and apparent singularities in differentially flat systems, and application to global motion planning, Syst. Control Lett., Volume 113 (2018), pp. 117-124 | DOI | MR | Zbl

[44] Yirmeyahu J. Kaminski; Jean Lévine; François Ollivier On singularities of flat affine systems with n states and n-1 controls, Int. J. Robust Nonlinear Control, Volume 30 (2020) no. 9, pp. 3547-3565 | DOI | MR | Zbl

[45] E. R. Kolchin Differential algebra and algebraic groups, Pure and Applied Mathematics, 54, Academic Press Inc., 1973 | MR | Zbl

[46] Ellis Kolchin Selected works of Ellis Kolchin with commentary (Hyman Bass; Alexandru Buium; Phyllis J. Cassidy, eds.), American Mathematical Society, 1999 | Zbl

[47] Farid Kenas; Nadia Saadia; Amina Ababou; Noureddine Ababou Model-free based adaptive finite time control with multilayer perceptron neural network estimation for a 10 DOF lower limb exoskeleton, Int. J. Adapt. Control Signal Process., Volume 38 (2024) no. 2, pp. 696-730 | DOI | MR

[48] F. Lafont; J.-F. Balmat; N. Pessel; M. Fliess A model-free control strategy for an experimental greenhouse with an application to fault accommodation, Comput. Electron. Agric., Volume 110 (2015), pp. 139-149 | DOI

[49] P. La Hera; O. Mandeza-Trejo; H. Lideskog; D. Ortíz Morales A framework to develop and test a model-free motion control system for a forestry crane, Biomimetic Intell. Robot., Volume 3 (2023) no. 4, 100133 | DOI

[50] Wanrong Li; Sinan Li; Huawei Yuan; Yuhan Zhang; Jianguo Zhu Controller design automation for power electronics: A model-free approach, IEEE Trans. Power Electron., Volume 39 (2024) no. 2, pp. 2155-2168 | DOI

[51] Jean Lévine Analysis and control of nonlinear systems. A flatness-based approach, Mathematical Engineering, Springer, 2009 | DOI | MR | Zbl

[52] M. Moreno-Gonzales; A. Artuñedo; J. Villagra; C. Join; M. Fliess Speed-Adaptive Model-Free Path-Tracking Control for Autonomous Vehicles: Analysis and Design, Vehicles, Volume 5 (2023) no. 2, pp. 698-717 | DOI

[53] T. Miunske Ein szenarienadaptiver Bewegungsalgorithmus für die Längsbewegung eines vollbeweglichen Fahrsimulators, Springer, 2020 | DOI

[54] H. Mounier; C. Join; E. Delaleau; M. Fliess Active queue management for alleviating Internet congestion via a nonlinear differential equation with a variable delay, Annu. Rev. Control, Volume 55 (2023), pp. 61-69 | DOI

[55] Loïc Michel; Ingrid Neunaber; Rishabh Mishra; Caroline Braud; Franck Plestan; Jean-Pierre Barbot; Pol Hamon A Novel Lift Controller for a Wind Turbine Blade Section Using an Active Flow Control Device Including Saturations: Experimental Results, IEEE Trans. Autom. Control, Volume 32 (2024) no. 5, pp. 1590-1601 | DOI

[56] M. Nowicki; W. Respondek; J. Piasek; K. Kozłowski Geometry and flatness of m-crane systems, Bull. Pol. Acad. Sci., Tech. Sci., Volume 67 (2019) no. 5, pp. 893-903 | DOI

[57] Gerasimos G. Rigatos Nonlinear control and filtering using differential flatness approaches. Applications to electromechanical systems, Studies in Systems, Decision and Control, 25, Springer, 2015 | DOI | MR | Zbl

[58] Joachim Rudolph Flatness-Based Control, Berichte aus der Steuerungs- und Regelungstechnik, Shaker Verlag, 2021

[59] I. R. Shafarevich Basic notions of algebra. Transl. from the Russian, Springer, 1997 | MR | Zbl

[60] Caner Sancak; Mehmet Itik; Thang T. Nguyen Position Control of a Fully Constrained Planar Cable-Driven Parallel Robot With Unknown or Partially Known Dynamics, IEEE/ASME Trans. Mechatronics, Volume 28 (2023) no. 3, pp. 1605-1615 | DOI

[61] P. M. Scherer; A. Othmane; J. Rudolph Combining model-based and model-free approaches for the control of an electro-hydraulic system, Contr. Engin. Pract., Volume 133 (2023), 105453 | DOI

[62] Hebertt Sira-Ramírez; Sunil K. Agrawal Differentially flat systems., Control Engineering, 17, Marcel Dekker, 2004 | DOI | Zbl

[63] Hebertt Sira-Ramírez; Carlos García-Rodríguez; John Cortés-Romero; Alberto Luviano-Juárez Algebraic identification and estimation methods in feedback control systems, Wiley Series in Dynamics and Control of Electromechanical Systems, John Wiley & Sons, 2014 | DOI | Zbl

[64] Jorge Villagra; David Herrero-Perez A comparison of control techniques for robust docking maneuvers of an AGV, IEEE Trans. Control Sys. Technol., Volume 20 (2012) no. 4, pp. 1116-1123 | DOI

[65] Yangchun Wei; Haoping Wang; Yang Tian Prescribed performance model-free hybrid force/position control for 3-DOF SEA-based manipulator under partial state constraints, J. Franklin Inst., Volume 361 (2024) no. 10, 106944, 15 pages | DOI | MR | Zbl

[66] Z. Wang; X. Zhou; A. Cosio; J. Wang Ground vehicle lane-keeping assistance system via differential flatness output feedback control and algebraic derivative estimation, Contr. Engin. Pract., Volume 137 (2023), 105576 | DOI

[67] J. Yang; L. Huang; S. Wu; H. Liu; Y. Zhang Approximate optimal condition model-free predictive velocity control of a direct-drive wave energy converter based on ultra-local model, Ocean Eng., Volume 307 (2024), 118214 | DOI

[68] K. Yosida Operational calculus. A theory of hyperfunctions. Transl. from the Japanese, Applied Mathematical Sciences, 55, Springer, 1984 | DOI | MR | Zbl

[69] Yongchang Zhang; Zeyu Min Model-Free Predictive Current Control of a PWM Rectifier Based on Space Vector Modulation Under Unbalanced and Distorted Grid Conditions, IEEE J. Emerg. Sel. Top. Power Electron., Volume 10 (2022) no. 2, pp. 2319-2329 | DOI

[70] Yongchang Zhang; Wenjia Shen; Haitao Yang An improved deadbeat predictive current control of PMSM drives based on the ultra-local model, Chin. J. Electr. Eng., Volume 9 (2023) no. 2, pp. 27-37 | DOI

Cité par Sources :

Commentaires - Politique